Novel design of ring resonator based temperature sensor using photonics technology

Massoudi Radhouene , Mayur Kumar Chhipa , Monia Najjar , S. Robinson , Bhuvneshwer Suthar

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (4) : 311 -316.

PDF
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (4) : 311 -316. DOI: 10.1007/s13320-017-0443-z
Regular

Novel design of ring resonator based temperature sensor using photonics technology

Author information +
History +
PDF

Abstract

In the present paper, we study the transmission of the two-dimensional photonic crystal (PC) superellipse ring resonator. The fast growing applications of optomechanical systems lead to strong demands in new sensing mechanism in order to design the sensing elements to nanometer scale. The photonic crystal based resonator has been investigated as promising solutions because the band gap structure and resonator characteristics are extremely sensitive to the deformation and position shift of rod / cavity in PC resonators. This structure opens a single channel filter. The study is extended for tuning of channel filter’s wavelength with a temperature of this structure. The transmission of the channel filter shows a red shift with temperature linearly. This wavelength shift of the channel filter is used for the sensor application. The sensitivity for the proposed structure is found to be 65.3 pm/°C. The outstanding sensing capability renders PC resonators as a promising optomechanical sensing element to be integrated into various transducers for temperature sensing applications.

Keywords

Photonic crystal ring resonator / temperature sensor / finite difference time domain / PWE method

Cite this article

Download citation ▾
Massoudi Radhouene, Mayur Kumar Chhipa, Monia Najjar, S. Robinson, Bhuvneshwer Suthar. Novel design of ring resonator based temperature sensor using photonics technology. Photonic Sensors, 2016, 7(4): 311-316 DOI:10.1007/s13320-017-0443-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Joannopoulos J. D., Johnson S. G., Winn J. N., Meade R. D.. Photonic crystals: molding the flow of light, 2011, N. J., USA: Princeton university press, 38-47.

[2]

Robinson S., Nakkeeran R.. Investigation on two dimensional photonic crystal resonant cavity based bandpass filter. Optik-International Journal for Light and Electron Optics, 2012, 123(5): 451-457.

[3]

Alipour-Banaei H., Mehdizadeh F.. A proposal for anti-UVB filter based on one-dimensional photonic crystal structure. Digest Journal of Nanomaterials and Biostructures, 2012, 7(1): 361-371.

[4]

M. Radhouene, M. Najjar, and R. Houria, “Optimization of WDM demultiplexer based on photonic crystal,” in 2015 World Symposium on Computer Networks and Information Security (WSCNIS), Hammamet, Tunisia, 2015, pp. 1–4.

[5]

Bazargani H. P.. Proposal for a 4-channel all optical demultiplexer using 12-fold photonic quasicrystal. Optics Communications, 2012, 285(7): 1848-1853.

[6]

Rostami A., Nazari F., Banaei H. A., Bahrami A.. Anovel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics and Nanostructures-Fundamentals and Applications, 2010, 8(1): 14-22.

[7]

Cheng S. C., Wang J. Z., Chen L. W., Wang C. C.. Multichannel wavelength division multiplexing system based on silicon rods of periodic lattice constant of hetero photonic crystal units. Optik-International Journal for Light and Electron Optics, 2012, 123(21): 1928-1933.

[8]

Rostami A., Banaei H. A., Nazari F., Bahrami A.. An ultra compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure. Optik-International Journal for Light and Electron Optics, 2011, 122(16): 1481-1485.

[9]

Rawal S., Sinha R. K.. Design, analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer. Optics Communications, 2009, 282(19): 3889-3894.

[10]

Momeni B., Huang J., Soltani M., Askari M., Mohammadi S., Rakhshandehroo M., . Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms. Optics Express, 2006, 14(6): 2413-2422.

[11]

Louro P., Vieira M., Fernandes M., Vieira M. A., Costa J., Fantoni A.. Semiconductor device as optical demultiplexer for short range optical communications. Journal of Nanoscience Nanotechnology, 2011, 11(6): 5318-5322.

[12]

Wang Z., Fan S.. Optical circulators in two-dimensional magneto-optical photonic crystals. Optics Letters, 2005, 30(15): 1989-1991.

[13]

Bayindir M., Temelkuran B., Ozbay E.. Photonic-crystal-based beam splitters. Applied Physics Letters, 2000, 77(24): 3902-3904.

[14]

Tameh T. A., Isfahani B. M., Granpayeh N., Javan A. M.. Improving the performance of all-optical switching based on nonlinear photonic crystal microring resonators. AEU-International Journal of Electronics and Communications, 2011, 65(4): 281-287.

[15]

Wang H. Z., Zhou W. M., Zheng J. P.. A 2-D rods-in-air square-lattice photonic crystal optical switch. Optik-International Journal for Light and Electron Optics, 2010, 121(21): 1988-1993.

[16]

Massoudi R., Najjor M., Janyani V.. Tunable photonic crystal switch based on ring resonators with improved crosstalk and Q-factor. SPIE, 2017 102500Z.

[17]

Chhipa M. K., Massoudi R., Robinson S., Suthar B.. Improved dropping efficiency in two-dimensional photonic crystal-based channel drop filter for coarse wavelength division multiplexing application. Optical Engineering, 2017, 56(1): 015107.

[18]

Suthar B.. Tuning of guided mode in two dimensional chalcogenide based photonic crystal waveguide. Optik-International Journal for Light and Electron Optics, 2015, 126(22): 3429-3431.

[19]

Park I., Lee H. S., Kim H. J., Moon K. M., Lee S. G., Park S. G., . Photonic crystal power-splitter based on directional coupling. Optics Express, 2004, 12(15): 3599-3604.

[20]

Zabelin V., Dunbar L. A., Thomas N. L., Houdré R., Kotlyar V., O’Faolain L., . Self-collimating photonic crystal polarization beam splitter. Optics Letters, 2007, 32(5): 530-532.

[21]

Mallika C. S., Bahaddur I., Srikanth P. C., Sharan P.. Photonic crystal ring resonator structure for temperature measurement. Optik-International Journal for Light and Electron Optics, 2015, 126(20): 2252-2255.

[22]

Shanthi K. V., Robinson S.. Two-dimensional photonic crystal based sensor for pressure sensing. Photonic Sensors, 2014, 4(3): 248-253.

[23]

Sharma P., Sharan P.. Photonic crystal based ring resonator sensor for detection of glucose concentration for biomedical applications. International Journal of Emerging Technology and Advanced Engineering, 2014, 4(30): 702-706.

[24]

Olyaee S., Mohebzadeh-Bahabady A.. Designing a novel photonic crystal nano-ring resonator for biosensor application. Optical and Quantum Electronics, 2015, 47(7): 1881-1888.

[25]

Swain K. P., Palai G.. Estimation of human-hemoglobin using honeycomb structure: an application of photonic crystal. Optik-International Journal for Light and Electron Optics, 2016, 127(6): 3333-3336.

[26]

Robinson S., Nakkeeran R.. PC based optical salinity sensor for different temperatures. Photonic Sensors, 2012, 2(2): 187-192.

[27]

Johnson S. G., Joannopoulos J. D.. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express, 2001, 8(3): 173-190.

[28]

Gedney S. D.. Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Synthesis Lectures on Computational Electromagnetics, 2011, 6(1): 1-250.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/