Two-channel highly sensitive sensors based on 4 × 4 multimode interference couplers

Trung-Thanh Le

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (4) : 357 -364.

PDF
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (4) : 357 -364. DOI: 10.1007/s13320-017-0441-1
Regular

Two-channel highly sensitive sensors based on 4 × 4 multimode interference couplers

Author information +
History +
PDF

Abstract

We propose a new kind of microring resonators (MRR) based on 4 × 4 multimode interference (MMI) couplers for multichannel and highly sensitive chemical and biological sensors. The proposed sensor structure has advantages of compactness and high sensitivity compared with the reported sensing structures. By using the transfer matrix method (TMM) and numerical simulations, the designs of the sensor based on silicon waveguides are optimized and demonstrated in detail. We apply our structure to detect glucose and ethanol concentrations simultaneously. A high sensitivity of 9000 nm/RIU, detection limit of 2 × 10‒4 for glucose sensing and sensitivity of 6000 nm/RIU, detection limit of 1.3 × 10‒5 for ethanol sensing are achieved.

Keywords

Biological sensors / chemical sensors / optical microring resonators / high sensitivity / multimode interference / transfer matrix method / beam propagation method (BPM) / multichannel sensor

Cite this article

Download citation ▾
Trung-Thanh Le. Two-channel highly sensitive sensors based on 4 × 4 multimode interference couplers. Photonic Sensors, 2016, 7(4): 357-364 DOI:10.1007/s13320-017-0441-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Passaro V. M. N., Dell’Olio F., Casamassima B., Leonardis F. D.. Guided-wave optical biosensors. Sensors, 2007, 7(4): 508-536.

[2]

Ciminelli C., Campanella C. M., Dell’Olio F., Campanella C. E., Armenise M. N.. Label-free optical resonant sensors for biochemical applications. Progress in Quantum Electronics, 2013, 37(2): 51-107.

[3]

Wang W.. Advances in Chemical Sensors, 2012, Rijeka, Croatia: InTech, 1-346.

[4]

Shi L., Xu Y. H., Tan W., Chen X. F.. Simulation of optical microfiber loop resonators for ambient refractive index sensing. Sensors, 2007, 7(5): 689-696.

[5]

Yi H. X., Citrin D. S., Zhou Z. P.. Highly sensitive silicon microring sensor with sharp asymmetrical resonance. Optics Express, 2010, 18(13): 2967-2972.

[6]

Xia Z. X., Chen Y., Zhou Z. P.. Dual waveguide coupled microring resonator sensor based on intensity detection. IEEE Journal of Quantum Electronics, 2008, 44(1–2): 100-107.

[7]

Passaro V. M. N., Dell’Olio F., De Leonardis F.. Ammonia optical sensing by microring resonators. Sensors, 2007, 7(11): 2741-2749.

[8]

Le Arce C., De Vos K., Claes T., Komorowska K., Van Thourhout D., Bienstman P.. Silicon-on-insulator microring resonator sensor integrated on an optical fiber facet. IEEE Photonics Technology Letters, 2011, 23(13): 890-892.

[9]

Le T. T.. Realization of a multichannel chemical and biological sensor using 6 × 6 multimode interference structures. International Journal of Information and Electronics Engineering, Singapore, 2011, 2, 240-244.

[10]

De Vos K., Girones J., Claes T., De Koninck Y., Popelka S., Schacht E., . Multiplexed antibody detection with an array of silicon-on-insulator microring resonators. IEEE Photonics Journal, 2009, 1(4): 225-235.

[11]

Dai D. X.. Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators. Optics Express, 2009, 17(26): 23817-23822.

[12]

Chen Y., Li Z. Y., Yi H. X., Zhou Z. P., Yu J.. Microring resonator for glucose sensing applications. Frontiers of Optoelectronics in China, 2009, 2(3): 304-307.

[13]

Kim G. D., Son G. S., Lee H. S., Kim K. D., Lee S. S.. Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers. Optics Communications, 2008, 281(18): 4644-4647.

[14]

Errando-Herranz C., Saharil F., Romero A. M., Sandstrom N., Shafagh R. Z., Van Der Wijingaart W., . Integration of microfluidics with grating coupled silicon photonic sensors by one-step combined photopatterning and molding of OSTE. Optics Express, 2013, 21(18): 21293-21298.

[15]

Gavela A. F., García D. G., Ramirez J. C., Lechuga L. M.. Last advances in silicon-based optical biosensors. Sensors, 2016, 16(3): 1-15.

[16]

Soldano L. B., Pennings E. C. M.. Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 1995, 13(4): 615-627.

[17]

Bachmann M., Besse P. A., Melchior H.. General self-imaging properties in N × N multimode interference couplers including phase relations. Applied Optics, 1994, 33(18): 3905-3911.

[18]

Le T. T.. Multimode interference structures for photonic signal processing, 2010, Saarbrücken, Germany: LAP LAMBERT Academic Publishing, 1-328.

[19]

Heaton J. M., Jenkins R. M.. General matrix theory of self-imaging in multimode interference (MMI) couplers. IEEE Photonics Technology Letters, 1999, 11(2): 212-214.

[20]

Le T. T., Cahill L.. Generation of two Fano resonances using 4 × 4 multimode interference structures on silicon waveguides. Optics Communications, 2013, 301–302, 100-105.

[21]

Green W. M. J., Lee R. K., DeRose G., Scherer A., Yariv A.. Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control. Optics Express, 2005, 13(5): 1651-1659.

[22]

Le T. T., Cahill L. W.. The design of 4 × 4 multimode interference coupler based microring resonators on an SOI platform. Journal of Telecommunications and Information Technology, 2009 98-102.

[23]

Le D. T., Nguyen M. C., Le T. T.. Fast and slow light enhancement using cascaded microring resonators with the Sagnac reflector. Optik, 2017, 131, 292-301.

[24]

Liang X. P., Zhang Q. Z., Jiang H. B.. Quantitative reconstruction of refractive index distribution and imaging of glucose concentration by using diffusing light. Applied Optics, 2006, 45(32): 8360-8365.

[25]

Ciminelli C., Dell’Olio F., Conteduca D., Campanella C. M., Armenise M. N.. High performance SOI microring resonator for biochemical sensing. Optics & Laser Technology, 2014, 59, 60-67.

[26]

Marsh O. A., Xiong Y. L., Ye W. N.. Slot waveguide ring-assisted Mach-Zehnder interferometer for sensing applications. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(2): 440-443.

[27]

Hu J. J., Sun X. C., Agarwal A., Kimerling L. C.. Design guidelines for optical resonator biochemical sensors. Journal of the Optical Society of America B-Optical Physics, 2009, 26(5): 1032-1041.

[28]

Chen Y., Ding Y. L., Li Z. Y.. Ethanol Sensor Based on Microring Resonator. Advanced Materials Research, 2013 655-657.

[29]

Manipatruni S., Dokania R. K., Schmidt B., Sherwood Droz N., Poitras C. B., Apsel A. B., . Wide temperature range operation of micrometer-scale silicon electro-optic modulators. Optics Letters, 2008, 33(19): 2185-2187.

[30]

Han M., Wang A.. Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient. Optics Letters, 2007, 32(13): 1800-1802.

[31]

Gylfason K. B., Romero A. M., Sohlström H.. Reducing the temperature sensitivity of SOI waveguide-based biosensors. SPIE, 2012 84310F.

[32]

Wang C. T., Wang C. Y., Yu J. H., Kou I. T., Tseng C. W., Jau H. C., . Highly sensitive optical temperature sensor based on a SiN micro-ring resonator with liquid crystal cladding. Optics Express, 2016, 24(2): 1002-1007.

[33]

Qiu F., Yu F., Spring A. M., Yokoyama S.. Athermal silicon nitride ring resonator by photobleaching of disperse red 1-doped poly(methyl methacrylate) polymer. Optics Letters, 2012, 37(19): 4086-4088.

[34]

Han X. Y., Shao Y. C., Han X. N., Lu Z. L., Wu Z. L., Teng J., . Athermal optical waveguide microring biosensor with intensity interrogation. Optics Communications, 2015, 356, 41-48.

[35]

Guha B., Kyotoku B. B. C., Lipson M.. CMOS-compatible athermal silicon microring resonators. Optics Express, 2010, 18(4): 3487-3493.

[36]

Fard S. T., Donzella V., Schmidt S. A., Flueckiger J., Grist S. M., Talebi Fard P., . Performance of ultra-thin SOI-based resonators for sensing applications. Optics Express, 2014, 22(12): 14166-14179.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/