ANSYS-based birefringence property analysis of side-hole fiber induced by pressure and temperature

Xinbang Zhou , Zhenfeng Gong

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (1) : 13 -21.

PDF
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (1) : 13 -21. DOI: 10.1007/s13320-017-0434-0
Regular

ANSYS-based birefringence property analysis of side-hole fiber induced by pressure and temperature

Author information +
History +
PDF

Abstract

In this paper, we theoretically investigate the influences of pressure and temperature on the birefringence property of side-hole fibers with different shapes of holes using the finite element analysis method. A physical mechanism of the birefringence of the side-hole fiber is discussed with the presence of different external pressures and temperatures. The strain field distribution and birefringence values of circular-core, rectangular-core, and triangular-core side-hole fibers are presented. Our analysis shows the triangular-core side-hole fiber has low temperature sensitivity which weakens the cross sensitivity of temperature and strain. Additionally, an optimized structure design of the side-hole fiber is presented which can be used for the sensing application.

Keywords

Fiber optics / birefringence / pressure measurement / temperature

Cite this article

Download citation ▾
Xinbang Zhou, Zhenfeng Gong. ANSYS-based birefringence property analysis of side-hole fiber induced by pressure and temperature. Photonic Sensors, 2017, 8(1): 13-21 DOI:10.1007/s13320-017-0434-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li D. M., Zhang W., Zhou G. Y.. Numerical analysis of a side-hole birefringent photonic crystal fiber with high-pressure sensitivity. Optical Engineering, 2016, 55(9): 097106.

[2]

Vera E. R., Cordeiro C. M. B., Torres P.. Highly sensitive temperature sensor using a Sagnac loop interferometer based on a side-hole photonic crystal fiber filled with metal. Applied Optics, 2017, 56(2): 156-162.

[3]

Anuszkiewica A., Martynkien T., Olszewski J., Mergo P., Urbanczyk W.. Polarimetric sensitivity to hydrostatic pressure and temperature in a side-hole fiber with squeezed microstructure. Journal of Optics, 2015, 17(12): 25609-6.

[4]

Martynkien T., Wojcik G., Mergo P., Urbanczyk W.. Highly birefringent polymer side-hole fiber for hydrostatic pressure sensing. Optics Letters, 2015, 40(13): 3033-3035.

[5]

Moon D. S., Paek U. C., Chung Y.. Polarization controlled multi-wavelength Er-doped fiber laser using fiber Bragg grating written in few-mode side-hole fiber with an elliptical core. Optics Express, 2005, 13(14): 5574-5579.

[6]

Lee S. H., Kim B. H., Han W. T.. Effect of filler metals on the temperature sensitivity of side-hole fiber. Optics Express, 2009, 17(12): 9712-9717.

[7]

Chmielewska E., Urbanczyk W., Bock W. J.. Measurement of pressure and temperature sensitivities of a Bragg grating imprinted in a highly birefringent side-hole fiber. Applied Optics, 2003, 42(31): 6284-6291.

[8]

Zhang Q., Liu N., Fink T., Li H., Peng W., Han M.. Fibre-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber. IEEE Photonics Technology Letters, 2012, 24(17): 1519-1522.

[9]

Liu Y., Rahman B. M. A., Grattan K. T. V.. Thermal-stress-induced birefringence in bow-tie optical fibers. Applied Optics, 1994, 33(24): 5611-5616.

[10]

Xie H. M., Dabkiewicz P., Ulrich R., Okamoto K.. Side-hole fiber for fiber-optic pressure sensing. Optics Letters, 1986, 11(5): 333-335.

[11]

Hughes T. J. R.. Finite element method: linear static and dynamic finite element analysis, 2000, America: Dover Publications

[12]

Wei Y., Chang D. Y., Zheng K., Jian S. S.. Research on the distribution of model electric field and birefringence in circular-core side-hole fibers. Journal of Optoelectronics Laser, 2007, 18(2): 154-158.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/