Detection of laser-produced tin plasma emission lines in atmospheric environment by optical emission spectroscopy technique

Kadhim A. Aadim

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (4) : 289 -293.

PDF
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (4) : 289 -293. DOI: 10.1007/s13320-017-0429-x
Regular

Detection of laser-produced tin plasma emission lines in atmospheric environment by optical emission spectroscopy technique

Author information +
History +
PDF

Abstract

A spectroscopic study on laser-produced tin plasma utilizing the optical emission spectroscopy (OES) technique is presented. Plasma is produced from a solid tin target irradiated with pulsed laser in room environment. Electron temperature is determined at different laser peak powers from the ratio of line intensities, while electron density is deduced from Saha-Boltzmann equation. A limited number of suitable tin lines are detected, and the effect of the laser peak power on the intensity of emission lines is discussed. Electron temperatures are measured in the range of 0.36 eV–0.44 eV with electron densities of the order 1017 cm–3 as the laser peak power is varied from 11 MW to 22 MW.

Keywords

Tin plasma / laser-produced plasma / electron density / electron temperature

Cite this article

Download citation ▾
Kadhim A. Aadim. Detection of laser-produced tin plasma emission lines in atmospheric environment by optical emission spectroscopy technique. Photonic Sensors, 2016, 7(4): 289-293 DOI:10.1007/s13320-017-0429-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Autin M., Briand A., Mauchien P., Mermet J. M.. Characterization by emission spectrometry of a laser-produced plasma from a copper target in air at atmospheric pressure. Spectrochimica Acta Part B: Atomic Spectroscopy, 1993, 48(6–7): 851-862.

[2]

Hammadi O. A., Khalaf M. K., Kadhim F. J.. Fabrication of UV photodetector from nickel oxide nanoparticles deposited on silicon substrate by closed-field unbalanced dual magnetron sputtering techniques. Optical and Quantum Electronics, 2015, 47(2): 1-9.

[3]

Arab M., Bidin N., Rizvi Z. H., Safie S., Alsaedi M. A.. Comparison study of two commercial spectrometers for heavy metal analysis of laser induced breakdown spectroscopy (LIBS). Photonic Sensors, 2014, 4(1): 63-69.

[4]

Simeonsson J. B., Miziolek A. W.. Spectroscopic studies of laser-produced plasmas formed in CO and CO2 using 193, 266, 355, 532 and 1064 nm laser radiation. Applied Physics B, 1994, 59(1): 1-9.

[5]

Hammadi O. A., Khalafand M. K., Kadhim F. J.. Silicon nitride nanostructures prepared by reactive sputtering using closed-field unbalanced dual magnetrons. Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design & Applications, 2017, 231(5): 479-487.

[6]

Cremers D. A., Radziemski L. J.. Handbook of laser-induced breakdown spectroscopy, 2006, West Sussex, England, Chichester: John Wiley & Sons, Ltd., 1-275.

[7]

Zakour S. B., Taleb H.. Shift endpoint trace selection algorithm and wavelet analysis to detect the endpoint using optical emission spectroscopy. Photonic Sensors, 2016, 6(2): 158-168.

[8]

Hamadi O. A.. Effect of annealing on the electrical characteristics of CdO-Si heterostructure produced by plasma-induced bonding technique. Iraqi Journal of Applied Physics, 2008, 4(3): 34-37.

[9]

Gigisos M. A., Mar S., Perez C., De I. R. I.. Experimental Stark widths and shifts and transition probabilities of several Xe II lines. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1994, 49(2): 1575-1584.

[10]

Zhong D., Li Z. M.. Material measurement method based on femtosecond laser plasma shock wave. Photonic Sensors, 2017, 7(1): 1-10.

[11]

Hammadi O. A., Khalaf M. K., Kadhim F. J.. Fabrication and characterization of UV photodetectors based on silicon nitride nanostructures prepared by magnetron sputtering. Proceedings of the Institution of Mechanical Engineers Part N Journal of Nanoengineering & Nanosystems, 2015, 230(1): 32-36.

[12]

Griem H. R.. Plasma Spectroscopy, 1964, New York: McGraw-Hill

[13]

Wiese W. L., Martin G. A.. Wavelengths and transition probabilities for atoms and atomic ions, part II: Transition probabilitie, 1980, Washington, DC: National Bureau of Standards, 1-406.

[14]

Allmen M. V., Blatter A.. Laser-beam interaction with materials: physical principles and applications, 1995, Berlin: Springer-Verlag, 1-196.

[15]

Hamadi O. A.. Characteristics of CdO-Si heterostructure produced by plasma-induced bonding technique. Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design & Applications, 2008, 222(L1): 65-71.

[16]

Ismail R. A., Abdulrazaq O. A., Hadi A. A., Hamadi O. A.. Full characterization at 904nm of large area Si p-n junction photodetectors produced by laser-induced diffusion. International Journal of Modern Physics B, 2007, 19(31): 197-201.

[17]

Hammadi O. A.. Photovoltaic properties of thermally-grown selenium-doped silicon photodiodes for infrared detection applications. Photonic Sensors, 2015, 5(2): 152-158.

[18]

Yousif A. K., Hamadi O. A.. Plasma-induced etching of silicon surfaces. Bulgarian Journal of Physics, 2008, 35(3): 191-197.

[19]

Khalaf M. K., Al-Tememee N. A., Ibrahim F. T., Hameed M. A.. Crystalline structure and surface morphology of tin oxide films grown by DC reactive sputtering. Photonic Sensors, 2014, 4(4): 349-353.

[20]

Hammadi O. A., Khalaf M. K., Kadhim F. J., Chiad B. T.. Operation characteristics of a closed-field unbalanced dual-magnetrons plasma sputtering system. Bulgarian Journal of Physics, 2014, 41(1): 24-33.

[21]

Aadim K. A.. Optical emission spectroscopic analysis of plasma parameters in tin–copper alloy co-sputtering system. Optical and Quantum Electronics, 2016, 48(12): 545-551.

[22]

Hammadi O. A., Naji N. E.. Electrical and spectral characterization of CdS/Si heterojunction prepared by plasma-induced bonding. Optical and Quantum Electronics, 2016, 48(8): 1-7.

[23]

Miziolek A. W., Palleschi V., Schechter I.. Laser-induced breakdown spectroscopy: fundamentals and applications, 2006, Cambridge: Cambridge University Press, 1-640.

[24]

Song K., Lee Y. L., Sneddon J.. Applications of laser induced breakdown spectrometry. Applied Spectroscopy Reviews, 1997, 32(3): 183-235.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/