Review on pressure sensors for structural health monitoring

Samiksha Sikarwar , Satyendra , Shakti Singh , Bal Chandra Yadav

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (4) : 294 -304.

PDF
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (4) : 294 -304. DOI: 10.1007/s13320-017-0419-z
Review

Review on pressure sensors for structural health monitoring

Author information +
History +
PDF

Abstract

This paper reports the state of art in a variety of pressure and the detailed study of various matrix based pressure sensors. The performances of the bridges, buildings, etc. are threatened by earthquakes, material degradations, and other environmental effects. Structural health monitoring (SHM) is crucial to protect the people and also for assets planning. This study is a contribution in developing the knowledge about self-sensing smart materials and structures for the construction industry. It deals with the study of self-sensing as well as mechanical and electrical properties of different matrices based on pressure sensors. The relationships among the compression, tensile strain, and crack length with electrical resistance change are also reviewed.

Keywords

Strain / crack detection / self-sensing / smart materials / cement / pressure sensor

Cite this article

Download citation ▾
Samiksha Sikarwar, Satyendra, Shakti Singh, Bal Chandra Yadav. Review on pressure sensors for structural health monitoring. Photonic Sensors, 2016, 7(4): 294-304 DOI:10.1007/s13320-017-0419-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wen S. H., Chung D. D. L.. Piezoresistivity in continuous carbon fiber cement-matrix composite. Cement and Concrete Research, 1999, 29(3): 445-449.

[2]

Chung D. D. L.. Functional properties of cement-matrix composites. Journal of Materials Science, 2001, 36(6): 1315-1324.

[3]

Li V. C.. Interface tailoring for strain-hardening PVA-ECC. Aci Materials Journal, 2002, 99(5): 463-472.

[4]

Federal Reserve Bank of Minneapolis Community Development Project. Available online: https://en.wikipedia.org/wiki/Tacoma_Narrows_Bri dge (1940).

[5]

Han B. G., Han B. Z., Ou J. P.. Novel piezoresistive composite with high sensitivity to stress/strain. Materials Science & Technology, 2013, 26(7): 865-870.

[6]

Chen P. W., Chung D. D. L.. Low-drying-shrinkage concrete containing carbon fibres. Composites Part B-Engineering, 1996, 27(3–4): 269-274.

[7]

Fu X. L., Chung D. D. L.. Self-monitoring of fatigue damage in carbon fiber reinforced cement. Cement & Concrete Research, 1996, 26(1): 15-20.

[8]

Ikai S., Reichert J. R., Rodrigues A. V., Zampieri V. A.. Asbestos-free technology with new high toughness polypropylene (PP) fibers in air-cured Hatschek process. Construction & Building Materials, 2010, 24(2): 171-180.

[9]

Dong J. K., Naaman A. E., El-Tawil S.. Comparative flexural behavior of four-fiber reinforced cementitious composites. Cement & Concrete Composites, 2008, 30(10): 917-928.

[10]

Carazo A. V.. Novel piezoelectric transducers for high voltage measurements. Universitat Politècnica de Catalunya, 2000 242.

[11]

Gautschi G.. Piezoelectric sensorics, 2002, Heidelberg: Springer Berlin

[12]

Chang P. C., Flatau A., Liu S. C.. Review paper: health monitoring of civil infrastructure. Structural Health Monitoring, 2003, 2(3): 257-267.

[13]

Samman M. M., Biswas M.. Vibration testing for nondestructive evaluation of bridges II: results. Journal of Structural Engineering, 1994, 120(1): 290-306.

[14]

Wen S., Wang S., Chung D. D. L.. Piezoresistivity in continuous carbon fiber polymer-matrix and cement-matrix composites. Journal of Material Science, 2000, 35(14): 3669-3676.

[15]

Sohn H.. Effects of environmental and operational variability on structural health monitoring. Philosophical Transactions, 2007, 365(1851): 539-560.

[16]

Chang P. C., Flatau A., Liu S. C.. Review paper: health monitoring of civil infrastructure. Structural Health Monitoring, 2003, 2(3): 257-267.

[17]

Staszewski W. J., Robertson A. N.. Time-frequency and time-scale analysis for structural health monitoring. Philosophical Transactions, 1851, 365, 449-477.

[18]

Peled A., Zaguri E., Marom G.. Bonding characteristics of multifilament polymer yarns and cement matrices. Composites Part A-Applied Science & Manufacturing, 2008, 39(6): 930-939.

[19]

Singh S., Shukla A., Brown R.. Pull out behaviour of polypropylene fibers from the cementitious matrix. Cement & Concrete Research, 2004, 34(10): 1919-1925.

[20]

Bentur A.. Role of interfaces in controlling durability of fiber-reinforced cements. Journal of Materials in Civil Engineering, 2000, 12(1): 2-7.

[21]

Wang C. J., Kaya M., Sahay P., Alali H., Reese R.. Fiber optic sensors and sensor networks using a time-domain sensing scheme. Optics & Photonics Journal, 2013, 3(2B): 236-239.

[22]

Pandey N. K., Yadav B. C.. Embedded fibre optic microbend sensor for measurement of high pressure and crack detection. Sensors & Actuators A–Physical, 2006, 128(1): 33-36.

[23]

Pandey N. K., Yadav B. C.. Fiber optic pressure sensor and monitoring of structural defects. Optica Applicata, 2007, XXXVII, 57-63.

[24]

Pandey N. K., Yadav B. C., Tripathi A.. Monitoring of high pressure with fiber optic sensor. Sensors & Transducers, 2006, 74(12): 834-834.

[25]

Felekoglu B., Tosun K., Baradan B.. A comparative study on the flexural performance of plasma treated polypropylene fiber reinforced cementitious composites. Journal of Materials Processing Technology, 2009, 209(11): 5133-5144.

[26]

Chen P. W., Chung D. D. L.. Carbon fiber reinforced concrete as an intrinsically smart concrete for damage assessment during dynamic loading. Journal of the American Ceramic Society, 1995, 78(3): 816-818.

[27]

Pakravan H. R., Jamshidi M., Latifi M., Pachecotorgal F.. Cementitious composites reinforced with polypropylene, nylon and polyacrylonitrile fibres. Materials Science Forum, 2012 730-732.

[28]

Fu X. L., Lu W. M., Chung D. D. L.. Improving the strain sensing ability of carbon fiber reinforced cement by ozone treatment of the fibers. Cement & Concrete Research, 1998, 28(2): 183-187.

[29]

Fu X. L., Lu W. M., Chung D. D. L.. Ozone treatment of carbon fiber for reinforcing cement. Carbon, 1998, 36(9): 1337-1345.

[30]

Fu X. L., Chung D. D. L.. Self-monitoring of fatigue damage in carbon fiber reinforced cement. Cement & Concrete Research, 1996, 26(1): 15-20.

[31]

Wen S., Chung D. D. L.. Piezoresistivity in continuous carbon fiber cement-matrix composite. Cement & Concrete Research, 1999, 29(3): 445-449.

[32]

Montgomery D. C.. Introduction to statistical quality control, 1996, New York: John Wiley & Sons, 108-109.

[33]

Park G., Inman D. J.. Structural health monitoring using piezoelectric impedance measurements. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 2007, 365(1851): 373-392.

[34]

Randall R. B.. State of the art in monitoring rotating machinery-part 1. Sound & Vibration, 2004, 38(3): 14-21.

[35]

Available online: http://www.lindberg-lund.com/Files/PDF%20Kataloger/Lim/Konstruksjonslim/Dat ablad/Araldite%202033.pdf.

[36]

Soudki K. A., Green M. F., Clapp F. D.. Transfer length of carbon fiber rods in precast pretensioned concrete beams. Pci Journal, 1997, 42(5): 78-87.

[37]

Banthia N.. Carbon fiber reinforced cements: structure, performance, applications and research needs. American Concrete Institute, 1994, 142, 91-120.

[38]

Zheng Q. J., Chung D. D. L.. Carbon fiber reinforced cement composites improved by using chemical agents. Cement & Concrete Research, 1989, 19(1): 25-41.

[39]

Saito K., Kawamura N., Kogo Y.. Development of carbon fiber reinforced cement. 21st International SAMPE Technical Conference, 1989 796-802.

[40]

Kolsch H.. Carbon fiber cement matrix (CFCM) overlay system for masonry strengthening. Journal of Composites for Construction, 1998, 2(2): 105-109.

[41]

Uomoto T.. Concrete composites in the construction field. Advanced Composite Materials, 1995, 4(3): 261-269.

[42]

Pivacek A., Haupt G. J., Mobasher B.. Cement based cross-ply laminates. Advanced Cement Based Materials, 1997, 6(3–4): 144-152.

[43]

Chen P. W., Chung D. D. L.. Carbon fiber reinforced concrete as a smart material capable of non-destructive flaw detection. Smart Materials, 1993, 2(1): 22-30.

[44]

Sikarwar S., Yadav B. C.. Opto-electronic humidity sensor: a review. Sensors & Actuators A-Physical, 2015, 233, 54-70.

[45]

Huang X., Zhang D. C.. A high sensitivity and high linearity pressure sensor based on a peninsula-structured diaphragm for low-pressure ranges. Sensors & Actuators A–Physical, 2014, 216(1): 176-189.

[46]

Sur R., Sun K., Jeffries J. B., Socha J. G., Hanson R. K.. Scanned-wavelength-modulationspectroscopy sensor for CO, CO2, CH4 and H2O in a high-pressure engineering-scale transport-reactor coal gasifier. Fuel, 2015, 150, 102-111.

[47]

Schmid-Engela H., Uhliga S., Wernerc U., Schultesa G.. Strain sensitive Pt-SiO2 nano-cermet thin films for high-temperature pressure and force sensors. Sensors & Actuators A–Physical, 2014, 206(1): 17-21.

[48]

Sundararajan A. D., Rezaul Hasan S. M.. Release etching and characterization of MEMS capacitive pressure sensors integrated on a standard 8-metal 130 nm CMOS process. Sensors & Actuators A–Physical, 2014, 212(1): 68-79.

[49]

Cheng J. Y., Sundholm M., Zhou B., Hirsch M., Lukowicz P.. Smart-surface: large scale textile pressure sensors arrays for activity recognition. Pervasive & Mobile Computing, 2016, 30, 97-112.

[50]

Dabrowski A. P., Golonka L. J.. High-pressure sensor with PZT transducer in LTCC package. Procedia Engineering, 2014, 87, 1099-1102.

[51]

Wang J., Zhao C., Zhao G. H., Jin X. F., Zhang S. M., Zou J. B.. All-quartz high accuracy MEMS pressure sensor based on double-ended tuning fork resonator. Procedia Engineering, 2015, 120, 857-860.

[52]

Arogbonlo A., Usma C., Kouzani A. Z., Gibson I.. Design and fabrication of a capacitance based wearable pressure sensor using e-textiles. Procedia Technology, 2015, 20, 270-275.

[53]

Prasad M., Sahula V., Khanna V. K.. Design and fabrication of Si-diaphragm, ZnO piezoelectric film-based MEMS acoustic sensor using SOI wafers. IEEE Transactions on Semiconductor Manufacturing, 2013, 26(2): 233-241.

[54]

Teomete E.. Measurement of crack length sensitivity and strain gage factor of carbon fiber reinforced cement matrix composites. Measurement, 2015, 74, 21-30.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/