A study on refractive index sensors based on optical micro-ring resonators

Georgios N. Tsigaridas

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (3) : 217 -225.

PDF
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (3) : 217 -225. DOI: 10.1007/s13320-017-0418-0
Regular

A study on refractive index sensors based on optical micro-ring resonators

Author information +
History +
PDF

Abstract

In this work, the behavior of refractive index sensors based on optical micro-ring resonators is studied in detail. Using a result of waveguide perturbation theory in combination with numerical simulations, the optimum design parameters of the system, maximizing the sensitivity of the sensor, are determined. It is found that, when optimally designed, the sensor can detect relative refractive index changes of the order of Δn/n≈3×10−4, assuming that the experimental setup can detect relative wavelength shifts of the order of Δλ/λ≈3×10−5. The behavior of the system as bio-sensor has also been examined. It is found that, when optimally designed, the system can detect refractive index changes of the order of Δn≈10−3 for a layer thickness of t=10 nm, and changes in the layer thickness of the order of λt≈0.24 nm, for a refractive index change of Δn=0.05.

Keywords

Optical micro-ring resonators / refractive index sensors / bio-sensors / nano-photonic sensors

Cite this article

Download citation ▾
Georgios N. Tsigaridas. A study on refractive index sensors based on optical micro-ring resonators. Photonic Sensors, 2016, 7(3): 217-225 DOI:10.1007/s13320-017-0418-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ji R. Q., Yang L., Zhang L., Tian Y. H., Ding J. F., Chen H. T., . Microring-resonator-based four-port optical router for photonic networks-on-chip. Optics Express, 2011, 19(20): 18945-18955.

[2]

Ji R. Q., Xu J., Yang L.. Five-port optical router based on microring switches for photonic networks-on-chip. IEEE Photonics Technology Letters, 2013, 25(5): 492-495.

[3]

Hu T., Shao H., Yang L. Z., Xu C., Yang M., Yu H., . Four-port silicon multi-wavelength optical router for photonic networks-on-chip. IEEE Photonics Technology Letters, 2013, 25(23): 2281-2284.

[4]

Emelett S. J., Soref R.. Design and simulation of silicon microring optical routing switches. Journal of Lightwave Technology, 2005, 23(4): 1800-1807.

[5]

Xu Q., Lipson M.. All-optical logic based on silicon micro-ring resonators. Optics Express, 2007, 15(3): 924-929.

[6]

Van V., Ibrahim T. A., Ritter K., Absil P. P., Johnson F. G., Grover R., . All-optical nonlinear switching in GaAs-AlGaAs microring resonators. IEEE Photonics Technology Letters, 2002, 14(1): 74-76.

[7]

J. N. Xia, “Microring-resonator-based switch architectures for optical networks,” Ph.D. dissertation, Politecnico di Torino, Turin MA, 2014.

[8]

White I. M., Fan X.. On the performance quantification of resonant refractive index sensors. Optics Express, 2008, 16(2): 1020-1028.

[9]

Gabalis M., Urbonas D., Petruskevicius R.. A perforated microring resonator for optical sensing applications. Journal of Optics, 2014, 16(10): 105003.

[10]

Yalcin A., Popat K. C., Aldridge J. C., Desai T. A., Hryniewicz J., Chbouki N., . Optical sensing of biomolecules using microring resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 148-155.

[11]

Bogaerts W., Heyn P. D., Vaerenbergh T. V., Vos K. D., Selvaraja S. K., Claes T., . Silicon microring resonators. Laser & Photonics Reviews, 2015, 6(1): 47-73.

[12]

Jin J. M.. The finite element method in electromagnetics, 2014, Wiley: Piscataway, U.S.

[13]

Snyder A. W., Love J. D.. Optical waveguide theory, 1983, Springer US: New York, U.S., 1-37.

[14]

Gylfason K. B., Carlborg C. F., Kazmierczak A., Dortu F., Sohlstom H., Vivien L., . On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array. Optics Express, 2010, 18(4): 3226-3237.

[15]

Raghunathan V., Ye W. N., Hu J. J., Izuhara T., Michel J., Kimerling L.. Athermal operation of silicon waveguides: spectral, second order and footprint dependencies. Optics Express, 2010, 18(17): 17631-17639.

[16]

Agrawal G. P.. Nonlinear Fiber Optics, 2001, Academic Press: Pittsburgh, 1-61.

[17]

Optical constants for a variety of materials. Available online: http://refractiveindex.info/.

[18]

Consales M., Pisco M., Cusano A.. Lab-on-fiber technology: a new avenue for optical nanosensors. Photonic Sensors, 2012, 2(4): 289-315.

[19]

Olyaee S., Najafgholinezhad S., Alipour- Banaei H.. Four-channel label-free photonic crystal biosensor using nanocavity resonators. Photonic Sensors, 2013, 3(3): 231-236.

[20]

Nejadebrahimy M., Halimi L., Alipour- Banaei H.. Design and simulation of ultrasensitive nano-biosensor based on OFPC. Photonic Sensors, 2015, 5(1): 43-19.

[21]

Robinson S., Dhanlaksmi N.. Photonic crystal based biosensor for the detection of glucose concentration in urine. Photonic Sensors, 2017, 7(1): 11-19.

[22]

Han X. N., Han X. Y., Shao Y. H., Wu Z. L., Liang Y. X., Teng J., . Polymer integrated waveguide optical biosensor by using spectral splitting effect. Photonic Sensors, 2017, 7(2): 131-139.

[23]

Heng H., Wang R.. Electromagnetic resonant properties of metal-dielectric-metal (MDM) cylindrical microcavities. Photonic Sensors, 2017, 7(2): 148-156.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/