Thermal analysis and experimental study of end-pumped Nd: YLF laser at 1053 nm

R. M. El-Agmy , N. Al-Hosiny

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (4) : 329 -335.

PDF
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (4) : 329 -335. DOI: 10.1007/s13320-017-0412-6
Regular

Thermal analysis and experimental study of end-pumped Nd: YLF laser at 1053 nm

Author information +
History +
PDF

Abstract

We have numerically analyzed the thermal effects in Nd: YLF laser rod. The calculations of temperature and stress distributions in the Nd: YLF laser rod was performed with finite element (FE) simulations. The calculations showed that the laser rod could be pumped up to a power of 40 W without fracture caused by thermal stress. The calculated thermal lens power of thermally induced lens in Nd: YLF (σ-polarization) laser rod was analyzed and validated experimentally with two independent techniques. A Shack-Hartmann wavefront sensor and a Mach-Zehnder interferometer were used for direct measurements of focal thermal lens at different pump powers. The obtained measurements were coinciding with the FE simulations.

Keywords

Solid state lasers / thermally induced lens / wavefront sensors

Cite this article

Download citation ▾
R. M. El-Agmy, N. Al-Hosiny. Thermal analysis and experimental study of end-pumped Nd: YLF laser at 1053 nm. Photonic Sensors, 2016, 7(4): 329-335 DOI:10.1007/s13320-017-0412-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Koechner W., Wilson M. K.. Solid-state laser engineering: second completely revised and updated edition. Applied Optics, 1989, 28(48): 509-530.

[2]

Cousins A. K.. Temperature and thermal stress scaling in finite-length end-pumped laser rods. IEEE Journal of Quantum Electronics, 1992, 28(4): 1057-1069.

[3]

Tidwell S. C., Seamans J. F., Bowers M. S.. Highly efficient 60-W TEM00 cw diode-endpumped Nd: YAG laser. Optics Letters, 1993, 18(2): 116-118.

[4]

Murray J. E.. Pulsed gain and thermal lensing of Nd: LiYF4. IEEE Journal of Quantum Electronics, 2003, 19(4): 488-491.

[5]

Keileck C., Hirth A., Schellhorn M. T.. Performances of Ho: YAG laser intracavity-pumped by a diode-pumped TM: YLF laser. SPIE, 2004, 5478, 488-491.

[6]

Keileck C., Hirth A., Schellhorn M. T.. Performances of Ho: YAG laser intracavity-pumped by a diode-pumped TM: YLF laser. Optics Letters, 2003, 28, 1933-1935.

[7]

Koechner W., Rice D. K.. Effect of birefringence on the performance of linearly polarized YAG: Nd lasers. IEEE Journal of Quantum Electronics, 1970, 6(9): 557-566.

[8]

Huang Y. J., Tang C. Y., Lee W. L., Huang Y. P., Huang S. C., Chen Y. F.. Efficient passively Q-switched Nd: YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence. Applied Physics B, 2012, 108(2): 313-317.

[9]

Schuhmann K., Kirch K., Nez F., Pohl R., Antognini A.. Thin-disk laser scaling limit due to thermal lens induced misalignment instability. Applied Optics, 2016, 55(22): 9022-9032.

[10]

Kim D. L., Kim B. T.. Laser output power losses in ceramic Nd: YAG lasers due to thermal effects. Optik–International Journal for Light and Electron Optics, 2016, 127(20): 9738-9742.

[11]

Chenais S., Druon F., Balembois F., Lucas-Leclin G., Fichot Y., Georges P., . Thermal lensing measurements in diode-pumped Yb doped GdCOB, YCOB, YSO, YAG and KGW. Optical Materials, 2003, 22(2): 129-137.

[12]

Chenais S., Balembois F., Druon F., Lucas-Leclin G., Georges P.. Thermal lensing in diode-pumped ytterbium lasers part II: evaluation of quantum efficiencies and thermo-optic coefficients. IEEE Journal of Quantum Electronics, 2004, 40(9): 1235-1242.

[13]

Hardman P. J., Clarkson W. A., Friel G. J., Pollnau M., Hanna D. C.. Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd: YLF laser crystals. IEEE Journal of Quantum Electronics, 1999, 35(4): 647-655.

[14]

Zhang Z. L., Liu Q., Nie M. M., Ji E. C., Gong M. L.. Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd:YLF crystal for s and p polarizations. Applied Physics B, 2015, 120(4): 689-696.

[15]

LASCAD Gmbh, Brimhildenstr. 9, 80639 Munich, Germany. Available online: http://www.las-cad.com/index.php.

[16]

Brown D. C.. Ultrahigh-average-power diodepumped Nd: YAG and Yb: YAG lasers. IEEE Journal of Quantum Electronics, 1977, 33(5): 861-873.

[17]

Bollig C., Jacobs C., Esser M. J. D., Bernhardi E. H., von Bergmann H. M.. Power and energy scaling of a diode-end-pumped Nd: YLF laser through gain optimization. Optics Express, 2010, 18(13): 13993-14003.

[18]

Weber M. J.. Hand book of pptical materials, 2002, New York: CRC Press London, 1-499.

[19]

Wetter N. U., Sousa E. C., Camargo F. A., Ranieri I. M., Baldochi S. L.. Efficient and compact diode side pumped Nd: YLF laser operating at 1053 nm with high beam quality. Journal of Optics A Pure & Applied Optics, 2008, 10(10): 1-5.

[20]

Innocenzi M. E., Yura H. T., Fincher C. L., Fields R. A.. Thermal modeling of continuous-wave end-pumped solid-state lasers. Applied Physics Letters, 1990, 56(19): 1831-1833.

[21]

Liu Y., Zhang W., Xu T., He J., Zhang F., Li F.. Fiber laser sensing system and its applications. Photonic Sensors, 2011, 1(1): 43-53.

[22]

Mayeh M., Farahi F.. Laser beam shaping and mode conversion in optical fibers. Photonic Sensors, 2011, 1(1): 187-198.

[23]

Jia P. G., Fang G. C., Wang D. H.. Characterization of miniature fiber-optic Fabry-Perot interferometric sensors based on hollow silica tube. Photonic Sensors, 2016, 6(3): 193-198.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/