An arc tangent function demodulation method of fiber-optic Fabry-Perot high-temperature pressure sensor

Qianyu Ren , Junhong Li , Yingping Hong , Pinggang Jia , Jijun Xiong

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (3) : 211 -216.

PDF
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (3) : 211 -216. DOI: 10.1007/s13320-017-0409-1
Regular

An arc tangent function demodulation method of fiber-optic Fabry-Perot high-temperature pressure sensor

Author information +
History +
PDF

Abstract

A new demodulation algorithm of the fiber-optic Fabry-Perot cavity length based on the phase generated carrier (PGC) is proposed in this paper, which can be applied in the high-temperature pressure sensor. This new algorithm based on arc tangent function outputs two orthogonal signals by utilizing an optical system, which is designed based on the field-programmable gate array (FPGA) to overcome the range limit of the original PGC arc tangent function demodulation algorithm. The simulation and analysis are also carried on. According to the analysis of demodulation speed and precision, the simulation of different numbers of sampling points, and measurement results of the pressure sensor, the arc tangent function demodulation method has good demodulation results: 1 MHz processing speed of single data and less than 1% error showing practical feasibility in the fiber-optic Fabry-Perot cavity length demodulation of the Fabry-Perot high-temperature pressure sensor.

Keywords

Arc tangent / Fabry-Perot / demodulation / pressure sensor

Cite this article

Download citation ▾
Qianyu Ren, Junhong Li, Yingping Hong, Pinggang Jia, Jijun Xiong. An arc tangent function demodulation method of fiber-optic Fabry-Perot high-temperature pressure sensor. Photonic Sensors, 2016, 7(3): 211-216 DOI:10.1007/s13320-017-0409-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

George T., Son K. A., Powers R. A., Castillo L. Y. D., Okojie R.. Harsh environment microtechnologies for NASA and terrestrial applications. Proceeding of IEEE 4th International Conference on Sensors, Irvine, CA, USA, 2005 1253-1258.

[2]

Fang G. C., Jia P. G., Liang T., Tan Q. L., hong Y. P., Liu W. Y., . Diaphragm-free fiber-optic Fabry-Perot interferometer based on tapered hollow silica tube. Optics communications, 2016, 371, 201-205.

[3]

Yu Z. H., Wang A. B.. Fast demodulation algorithm for multiplexed low-finesse Fabry-Perot interferometers. Journal of Lightwave Technology, 2016, 34(3): 1015-1019.

[4]

Jiang J. F., Liu T. G., Zhang Y. M., Liu L. N., Zha Y., Zhang F., . Development of a parallel demodulation system used for extrinsic Fabry-Perot interferometer and fiber Bragg grating sensors. Applied Optics, 2006, 45(3): 528-535.

[5]

Wu B., Yuan Y., Yang J., Zhao A., Yuan L.. Improved signal demodulation method in optical fiber seismometer. Sensor Letters, 2012, 10(7): 1402-1406.

[6]

Allan W. R., Graham Z. W., Zayas J. R., Roach D. P., Horsley D. A.. Multiplexed fiber Bragg grating interrogation system using a microelectromechanical Fabry-Perot tunable filter. IEEE Sensors Journal, 2009, 9(8): 936-943.

[7]

Yu Q. X., Zhou X. L.. Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer. Photonic Sensors, 2011, 1(1): 72-83.

[8]

Li M., Tong B., Arsad N., Guo J. J.. A double-fiber Fabry-Perot sensor based on modified fringe counting and direct phase demodulation. Measurement Science & Technology, 2013, 24(9): 094012.

[9]

Tao Y. F., Wang M., Guo D. M., Ni X. Q., Hao H.. Nine-point phase demodulation for interferometric measurement. Optik, 2016, 127(14): 5654-5662.

[10]

Lu E., Ran Z. L., Peng F., Liu Z. W., Xu F. G.. Demodulation of micro fiber-optic Fabry-Perot interferometer using subcarrier and dual-wavelength method. Optics Communications, 2012, 285(6): 1087-1090.

[11]

Toge K., Ito F.. Recent research and development of optical fiber monitoring in communication systems. Photonic Sensors, 2013, 3(4): 304-313.

[12]

Xie J. H., Wang F. Y., Pan Y., Wang J. J., Hu Z. L., Hu Y. M.. High resolution signal-processing method for extrinsic Fabry-Perot interferometric sensors. Optical Fiber Technology, 2015, 22, 1-6.

[13]

Wang N., Zhu Y., Gong T. C., Li L. H., Chen W. M.. Multichannel fiber optic Fabry-Perot nonscanning correlation demodulator. Chinese Optics Letters, 2013, 11(7): 10-12.

[14]

Chen H. T., Liang Y. C.. Analysis of the tunable asymmetric fiber F-P cavity for fiber sensor edge-filter demodulation. Proceeding of IEEE 2014 International Conference on Consumer Electronics, Shenzhen, 2014 338-343.

[15]

“Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier,” Optics Communications, 2017, 382: 514–518.

[16]

Liu Y., Wang L. W., Tian C. D., Zhang M., Liao Y.. Analysis and optimization of the PGC method in all digital demodulation systems. Journal of Lighawave Technology, 2008, 26(17–20): 3225-3233.

[17]

Wei Y. J., Zhai Z. H.. Error analysis of dual wavelength quadrature phase demodulation for low-finesse Fabry-Perot cavity based fibre optic sensor. Optik, 2011, 122(14): 1309-1311.

[18]

Zhang A. L., Zhang S.. High stability fiber-optics sensors with an improved PGC demodulation algorithm. IEEE Sensors Journal, 2016, 16(21): 7681-7684.

[19]

Huang S. C., Huang Y. F., Hwang F. H.. An improved sensitivity normalization technique of PGC demodulation with low minimum phase detection sensitivity using laser modulation to generate carrier signal. Sensors and Actuators A: Physical, 2013, 191, 1-10.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/