Research on multi-component gas optical detection system based on conjugated interferometer

Xin Gui , Yuheng Tong , Honghai Wang , Haihu Yu , Zhengying Li

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (3) : 261 -269.

PDF
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (3) : 261 -269. DOI: 10.1007/s13320-017-0405-5
Regular

Research on multi-component gas optical detection system based on conjugated interferometer

Author information +
History +
PDF

Abstract

An optical multi-component gas detection system based on the conjugated interferometer (CI) is proposed and experimentally demonstrated. It can realize the concentration detection of mixture gas in the environment. The CI can transform the absorption spectrum of the target gases to a conjugated emission spectrum, when combining the CI with the broadband light source, the spectrum of output light matches well with the absorption spectrum of target gases. The CI design for different target gases can be achieved by replacing the kind of target absorbing gas in the CI filter. Traditional fiber gas sensor system requires multiple light sources for detection when there are several kinds of gases, and this problem has been solved by using the CI filter combined with the broadband light source. The experimental results show that the system can detect the concentration of multi-component gases, which are mixed with C2H2 and NH3. Experimental results also show a good concentration sensing linearity.

Keywords

Gas conjugated interference filter / gas sensing / spectral absorption

Cite this article

Download citation ▾
Xin Gui, Yuheng Tong, Honghai Wang, Haihu Yu, Zhengying Li. Research on multi-component gas optical detection system based on conjugated interferometer. Photonic Sensors, 2016, 7(3): 261-269 DOI:10.1007/s13320-017-0405-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dhawan R., Khan M. M., Panwar N., Tiwari U., Bhatnagar R., Jain S. C., . A low loss mechanical splice for gas sensing using hollow-core photonic crystal fibre. Optik–International Journal for Light and Electron Optics, 2013, 124(18): 3671-3673.

[2]

Schilt S., Thevenaz L., Nikles M., Emmenegger L., Huglin C.. Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2004, 60(14): 3259-3268.

[3]

Smith D., Spanel P.. The challenge of breath analysis for clinical diagnosis and therapeutic monitoring. Analyst, 2007, 132(5): 390-396.

[4]

Lu R. J., Shen D. M., Du Q. Q., Huang B. Z., Shi J. S.. Tuning characteristics of DFB diode laser and its application to TDLAS gas sensor design. Applied Mechanics & Materials, 2014, 511, 173-177.

[5]

Jahjah M., Lewicki R., Tittle K. F., Krzempek K., Stefanski P., So S., . CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multi-pass gas absorption cell. SPIE, 2013, 112(4): 461-465.

[6]

Ye J., Li Z. A.. Method for the measurement of methane gas based on multi-beam interferometry. Journal of the Optical Society of Korea, 2013, 17(6): 481-485.

[7]

Ding H., Liang J. Q., Cui J. H., Wu X. N.. A novel fiber Fabry-Perot filter based mixed-gas sensing system. Sensors & Actuators B: Chemical, 2009, 138(1): 154-159.

[8]

Chan K. L., Ning Z., Westerdahl D., Wong K. C., Sun Y. W., Hartl A., . Dispersive infrared spectroscopy measurements of atmospheric CO2 using a Fabry-Perot interferometer sensor. Science of the Total Environment, 2014, 472, 27-35.

[9]

Jin W., Murray S., Pinchbeck D., Stewart G., Culshaw B.. Absorption measurement of methane gas with a broadband light source and interferometric signal processing. Optics Letters, 1993, 18(16): 1364.

[10]

Hodgkinson J., Smith R., Ho W. O., Saffell J. R., Tatam R. P.. Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor. Sensors & Actuators B: Chemical, 2013, 186(186): 580-588.

[11]

Zhu Z. P., Xu Y. H., Jiang B. G.. A one ppm NDIR methane gas sensor with single frequency filter denoising algorithm. Sensors, 2012, 12(9): 12729-12740.

[12]

Bilodeau F., Hill K. O., Malo B., Johnson D. C., Albert J.. High-return-loss narrowband all-fiber bandpass Bragg transmission filter. IEEE Photonics Technology Letters, 1994, 6(1): 80-82.

[13]

Liu P. Q., Wang X., Gmachl C. F.. Single-mode quantum cascade lasers employing asymmetric Mach-Zehnder interferometer type cavities. Applied Physics Letters, 2012, 101(16): 219-221.

[14]

Li Z. Y., Gui X., Hu C. C., Zheng L., Wang H. H., Gong J. M.. Optical gas sensor based on gas conjugated interference light source. IEEE Photonics Technology Letters, 2015, 27(14): 1550-1552.

[15]

HITRAN on the Web. Available online: http://hitran.iao.ru (accessed on 1 July 2012).

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/