Low-frequency vibration measurement by a dual-frequency DBR fiber laser

Bing Zhang , Linghao Cheng , Yizhi Liang , Long Jin , Tuan Guo , Bai-Ou Guan

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (3) : 206 -210.

PDF
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (3) : 206 -210. DOI: 10.1007/s13320-017-0402-8
Regular

Low-frequency vibration measurement by a dual-frequency DBR fiber laser

Author information +
History +
PDF

Abstract

A dual-frequency distributed Bragg reflector (DBR) fiber laser based sensor is demonstrated for low-frequency vibration measurement through the Doppler effect. The response of the proposed sensor is quite linear and is much higher than that of a conventional accelerometer. The proposed sensor can work down to 1 Hz with high sensitivity. Therefore, the proposed sensor is very efficient in low-frequency vibration measurement.

Keywords

Fiber laser sensors / Doppler effect / vibration measurement

Cite this article

Download citation ▾
Bing Zhang, Linghao Cheng, Yizhi Liang, Long Jin, Tuan Guo, Bai-Ou Guan. Low-frequency vibration measurement by a dual-frequency DBR fiber laser. Photonic Sensors, 2016, 7(3): 206-210 DOI:10.1007/s13320-017-0402-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Reithmeier E., Mirzaei S., Kasyanenko N.. Optical vibration and deviation measurement of rotating machine parts. Optoelectronics Letters, 2008, 4(1): 45-48.

[2]

Wang S., Fa X., Liu Q.. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR. Optics Express, 2015, 23(26): 33301-33309.

[3]

Wada A., Tanaka S., Takahash N.. Multipoint vibration sensing using fiber Bragg gratings and current-modulated laser diodes. Journal of Lightwave Technology, 2016, 34(19): 4610-4614.

[4]

Jiang D., Wei H.. Review of applications for fiber Bragg grating sensor. Journal of Optoelectronics Laser, 2002, 13(4): 420-430.

[5]

Linessio R. P., Sousa K. D., Silva T. D., Bavastri C. A., C. Antunes P. F. D., D. Silva J. C. C.. Induction motors vibration monitoring using a biaxial optical fiber accelerometer. IEEE Sensors Journal, 2016, 16(22): 8075-8082.

[6]

Weng Y., Qiao X., Feng Z., Hu M., Zhang J., Yang Y.. Compact FBG diaphragm accelerometer based on L-shaped rigid cantilever beam. Chinese Optics Letters, 2011, 9(10): 22-25.

[7]

Farrar C. R., Darling T. W., Migliori A., Baker W. E.. Microwave interferometers for non-contact vibration measurements on large structures. Mechanical Systems and Signal Processing, 1999, 13(2): 241-253.

[8]

Li T., Tan Y., Zhou Z., Cai L., Liu S., He Z., . Study on the non-contact FBG vibration sensor and its application. Photonic Sensors, 2015, 5(2): 128-136.

[9]

Singh K. M., Sumathi P.. Synchronization technique for Doppler signal extraction in ultrasonic vibration measurement systems. IEEE Transactions on Instrumentation and Measurement, 2015, 64(12): 3162-3172.

[10]

Zhou J. H., Chen G., Cao Q. S.. Design of ultrasonic system for vibration measurement based on Doppler effect. Instrument Technique and Sensor, 2015, 1(7): 61-62.

[11]

Castellini P., Martarell M., Tomasini E. P.. Laser doppler vibrometry: development of advanced solutions answering to technology’s needs. Mechanical Systems and Signal Processing, 2006, 20(6): 1265-1285.

[12]

Kuang Z. Y., Cheng L. H., Guan B. O., Liang H., Guan B.. Dual-polarization fiber grating laser-based laser Doppler velocimeter. Chinese Optical Letter, 2016, 14(5): 050602-050605.

[13]

Zhang Y., Guan B. O., Tam H. Y.. Ultra-short distributed Bragg reflector fiber laser for sensing application. Optics Express, 2009, 17(12): 10050-10055.

[14]

Liang Y. Z., Jin L., Cheng L. H., Guan B. O.. Stabilization of microwave signal generated by a dual-polarization DBR fiber laser via optical feedback. Optics Express, 2014, 22(24): 29356-29362.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/