Improving smoothing efficiency of rigid conformal polishing tool using time-dependent smoothing evaluation model

Chi Song , Xuejun Zhang , Xin Zhang , Haifei Hu , Xuefeng Zeng

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (2) : 171 -181.

PDF
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (2) : 171 -181. DOI: 10.1007/s13320-017-0400-x
Regular

Improving smoothing efficiency of rigid conformal polishing tool using time-dependent smoothing evaluation model

Author information +
History +
PDF

Abstract

A rigid conformal (RC) lap can smooth mid-spatial-frequency (MSF) errors, which are naturally smaller than the tool size, while still removing large-scale errors in a short time. However, the RC-lap smoothing efficiency performance is poorer than expected, and existing smoothing models cannot explicitly specify the methods to improve this efficiency. We presented an explicit time-dependent smoothing evaluation model that contained specific smoothing parameters directly derived from the parametric smoothing model and the Preston equation. Based on the time-dependent model, we proposed a strategy to improve the RC-lap smoothing efficiency, which incorporated the theoretical model, tool optimization, and efficiency limit determination. Two sets of smoothing experiments were performed to demonstrate the smoothing efficiency achieved using the time-dependent smoothing model. A high, theory-like tool influence function and a limiting tool speed of 300 RPM were o

Keywords

Optics design and fabrication / optics fabrication / polishing

Cite this article

Download citation ▾
Chi Song, Xuejun Zhang, Xin Zhang, Haifei Hu, Xuefeng Zeng. Improving smoothing efficiency of rigid conformal polishing tool using time-dependent smoothing evaluation model. Photonic Sensors, 2016, 7(2): 171-181 DOI:10.1007/s13320-017-0400-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nelson J., Sanders G. H.. The status of the thirty meter telescope project. SPIE, 2008 7012.

[2]

Johns M., Mccarthy P., Raybould K., Bouchez A., Farahani A., Filgueira J., . Giant magellan telescope: overview. SPIE, 2012 8444.

[3]

T. Hull, M. J. Riso, J. M. Barentine, and A. Magruder, “Mid-spatial frequency matters: examples of the control of the power spectral density and what that means to the performance of imaging systems,” SPIE, 2012, 8353: 835329-1-835329-17.

[4]

Kim D. W., Burge J. H.. Rigid conformal polishing tool using non-linear visco-elastic effect. Optics Express, 2010, 18(3): 2242-2257.

[5]

Martin H. M., Anderson D. S., Angel J. R. P., Nagel R. H., West S. C., Young R. S.. Progress in the stressed-lap polishing of a 1.8-mf/1 mirror. SPIE, 1990, 1236, 682-690.

[6]

Burge J. H., Anderson B., Benjamin S., Cho M. K., Smith K. Z., Valente M. J.. Development of optimal grinding and polishing tools for aspheric surfaces. SPIE, 1990, 4451, 153-164.

[7]

Shu Y., Nie X., Shi F., Li S.. Compare study between smoothing efficiencies of epicyclic motion and orbital motion. Optik - International Journal for Light and Electron Optics, 2014, 125(16): 4441-4445.

[8]

Brown N. J., Baker P. C., Parks R. E.. Polishing-to-figuring transition in turned optics. Contemporary Methods of Optical Fabrication, 1981, 306(6): 58-65.

[9]

Jones R. A.. Computer simulation of smoothing during computer-controlled optical polishing. Applied Optics, 1995, 34(7): 1162-1169.

[10]

Mehta P. K., Reid P. B.. Mathematical model for optical smoothing prediction of high-spatial- frequency surface errors. SPIE, 1999, 3786, 447-459.

[11]

Tuell M. T., Burge J. H., Anderson B.. Aspheric optics: Smoothing the ripples with semi-flexible tools. Optical Engineering, 2002, 15(2): 1473-1474.

[12]

Kim D. W., Park W. H., An H. K., Burge J. H.. Parametric smoothing model for visco-elastic polishing tools. Optics Express, 2010, 18(21): 22515-22526.

[13]

Shu Y., Kim D. W., Martin H. M., Burge J. H.. Correlation-based smoothing model for optical polishing. Optics Express, 2013, 21(23): 28771-28782.

[14]

Shu Y., Nie X., Shi F., Li S.. Smoothing evolution model for computer controlled optical surfacing. Journal of Optical Technology, 2014, 81(3): 164-167.

[15]

Nie X., Li S., Shi F., Hu H.. Generalized numerical pressure distribution model for smoothing polishing of irregular midspatial frequency errors. Applied Optics, 2014, 53(6): 1020-1027.

[16]

Fischer-Cripps A. C.. Multiple-frequency dynamic nanoindentation testing. Journal of Materials Research, 2004, 19(19): 2981-2988.

[17]

Burge J. H., Kim D. W., Martin H. M.. Process optimization for polishing large aspheric mirrors. SPIE, 2014 9151.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/