Harmful intrusion detection algorithm of optical fiber pre-warning system based on correlation of orthogonal polarization signals

Fukun Bi , Chong Feng , Hongquan Qu , Tong Zheng , Chonglei Wang

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (3) : 226 -233.

PDF
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (3) : 226 -233. DOI: 10.1007/s13320-017-0399-z
Regular

Harmful intrusion detection algorithm of optical fiber pre-warning system based on correlation of orthogonal polarization signals

Author information +
History +
PDF

Abstract

At present, advanced researches of optical fiber intrusion measurement are based on the constant false alarm rate (CFAR) algorithm. Although these conventional methods overcome the interference of non-stationary random signals, there are still a large number of false alarms in practical applications. This is because there is no specific study on orthogonal polarization signals of false alarm and intrusion. In order to further reduce false alarms, we analyze the correlation of optical fiber signals using birefringence of single-mode fiber. This paper proposes the harmful intrusion detection algorithm based on the correlation of two orthogonal polarization signals. The proposed method uses correlation coefficient to distinguish false alarms and intrusions, which can decrease false alarms. Experiments on real data, which are collected from the practical environment, demonstrate that the difference in correlation is a robust feature. Furthermore, the results show that the proposed algorithm can reduce the false alarms and ensure the detection performance when it is used in optical fiber pre-warning system (OFPS).

Keywords

Optical fiber / birefringence / orthogonal polarization signals / correlation

Cite this article

Download citation ▾
Fukun Bi, Chong Feng, Hongquan Qu, Tong Zheng, Chonglei Wang. Harmful intrusion detection algorithm of optical fiber pre-warning system based on correlation of orthogonal polarization signals. Photonic Sensors, 2016, 7(3): 226-233 DOI:10.1007/s13320-017-0399-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qu Z. G., Feng H., Zeng Z. M., Zhuge J. C., Jin S. J.. A SVM-based pipeline leakage detection and pre-warning system. Measurement, 2010, 43(4): 513-519.

[2]

Kang J., Zou Z. H.. Time prediction model for pipeline leakage based on grey relational analysis. Physics Procedia, 2010, 25(2): 2019-2024.

[3]

Liang W., Lu L. L., Zhang L. B.. Coupling relations and early-warning for ‘equipment chain’ in long-distance pipeline. Mechanical Systems and Signal Processing, 2013, 41(1–2): 335-347.

[4]

Liang W., Zhang L. B., Xu Q. Q., Yan C. Y.. Gas pipeline leakage detection based on acoustic technology. Engineering Failure Analysis, 2013, 31(6): 1-7.

[5]

Zhang T. T., Tan Y. F., Yang H. X., Zhao J. H., Zhang X. D.. Locating gas pipeline leakage based on stimulus-response method. Energy Procedia, 2014, 61, 207-210.

[6]

Lv Q. Y., Li L. J., Wang H. B., Li Q., Zhong X.. Influences of laser on fiber-optical distributed disturbance sensor based on F-OTDR. Infrared and Laser Engineering, 2014, 43(12): 3918-3923.

[7]

Martins H. F., Martin-Lopez S., Corredera P., Filograno M. L., Frazão O., Gonzáez-Herraez M.. Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves. Journal of Lightwave Technology, 2013, 31(23): 3631-3637.

[8]

Li Q., Zhang C. X., Li L. J., Zhong X.. Localization mechanisms and location methods of the disturbance sensor based on phase-sensitive OTDR. Optik–International Journal for Light and Electron Optics, 2014, 125(9): 2099-2103.

[9]

Lin Q., Zhang C. X., Li C. S.. Fiber-optic distributed sensor based on phase-sensitive OTDR and wavelet packet transform for multiple disturbances location. Optik–International Journal for Light and Electron Optics, 2014, 125(24): 7235-7238.

[10]

Bahrampour A. R., Maaoumi F.. Resolution enhancement in long pulse OTDR for application in structural health monitoring. Optical Fiber Technology, 2010, 16(4): 240-249.

[11]

Lu L. D., Song Y. J., Song X. J., Zhang X. P., Zhu F.. Frequency decision multiplexing OTDR with fast signal processing. Optics & Laser Technology, 2012, 44(7): 2206-2209.

[12]

Qu H. Q., Zheng T., Bi F. K., Pang L. P.. Vibration detection method for optical fiber pre-warning system. IET Signal Process, 2016, 10(6): 692-698.

[13]

Qu H. Q., Zheng T., Pang L. P., Li X. L.. A new two-dimension method to detect harmful intrusion vibrations for optical fiber pre-warning system. Optik–International Journal for Light and Electron Optics, 2016, 127(10): 4461-4469.

[14]

Zhang R. L., Sheng W. X., Ma X. F.. Improved switching CFAR detector for non-homogeneous environments. Signal Processing, 2013, 93(1): 35-48.

[15]

Weinberg G. V.. Management of interference in Pareto CFAR processes using adaptive test cell analysis. Signal Processing, 2014, 104(104): 264-273.

[16]

Shi B., Hao C. P., Hou C. H., Ma X. C., Peng C. Y.. Parametric Rao test for multichannel adaptive detection of range-spread target in partially homogeneous environments. Signal Processing, 2015, 108(108): 421-429.

[17]

Karimi M., Sun T., Grattan K. T. V.. Design evaluation of a high birefringence single mode optical fiber-based sensor for lateral pressure monitoring applications. IEEE Sensors Journal, 2013, 13(11): 4459-4464.

[18]

Palmieri L., Galtarossa A., Geisler T.. Distributed characterization of bending effects on the birefringence of single-mode optical fibers. Optics Letters, 2010, 35(14): 2481-2483.

[19]

Li Z. Y., Wu C. Q., Dong H., Shum P., Tian C. Y., Zhao S.. Stress distribution and induced birefringence analysis for pressure vector sensing based on single mode fibers. Optics Express, 2008, 16(6): 3955-3960.

[20]

Kim B. Y., Choi S. S.. Backscattering measurement of bending-induced birefringence in single mode fibres. Electronics Letters, 1981, 17(5): 193-194.

[21]

Leminger O. G.. Stress birefringence in single-mode fibres. Electronics Letters, 1977, 13(12): 370-371.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/