Polymer integrated waveguide optical biosensor by using spectral splitting effect

Xiaonan Han , Xiuyou Han , Yuchen Shao , Zhenlin Wu , Yuxin Liang , Jie Teng , Shuhui Bo , Geert Morthier , Mingshan Zhao

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (2) : 131 -139.

PDF
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (2) : 131 -139. DOI: 10.1007/s13320-017-0395-3
Regular

Polymer integrated waveguide optical biosensor by using spectral splitting effect

Author information +
History +
PDF

Abstract

The polymer waveguide optical biosensor based on the Mach-Zehnder interferometer (MZI) by using spectral splitting effect is investigated. The MZI based biosensor has two unequal width sensing arms. With the different mode dispersion responses of the two-arm waveguides to the cladding refractive index change, the spectral splitting effect of the output interference spectrum is obtained, inducing a very high sensitivity. The influence of the different mode dispersions between the two-arm waveguides on the spectral splitting characteristic is analyzed. By choosing different lengths of the two unequal width sensing arms, the initial dip wavelength of the interference spectrum and the spectral splitting range can be controlled flexibly. The polymer waveguide optical biosensor is designed, and its sensing property is analyzed. The results show that the sensitivity of the polymer waveguide optical biosensor by using spectral splitting effect is as high as 104 nm/RIU, with an improvement of 2–3 orders of magnitude compared with the slot waveguide based microring biosensor.

Keywords

Optical biosensor / integrated waveguide / spectral splitting / sensitivity

Cite this article

Download citation ▾
Xiaonan Han, Xiuyou Han, Yuchen Shao, Zhenlin Wu, Yuxin Liang, Jie Teng, Shuhui Bo, Geert Morthier, Mingshan Zhao. Polymer integrated waveguide optical biosensor by using spectral splitting effect. Photonic Sensors, 2016, 7(2): 131-139 DOI:10.1007/s13320-017-0395-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Washburn A. L., Bailey R. C.. Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications. Analyst, 2011, 136(2): 227-236.

[2]

Cadarso V. J., Llobera A., Puyol M., Schift H.. Integrated photonic nanofences: combining subwavelength waveguides with an enhanced evanescent field for sensing applications. ACS Nano, 2016, 10(1): 778-785.

[3]

Carrascosa L. G., Huertas C. S., Lechuga L. M.. Prospects of optical biosensors for emerging label-free RNA analysis. Trac Trends in Analytical Chemistry, 2016, 80, 177-189.

[4]

Makarona E., Petrou P., Kakabakos S., Misiakos K., Raptis I.. Point-of-need bioanalytics based on planar optical interferometry. Biotechnology Advances, 2016, 34(3): 209-233.

[5]

Fan X., White I. M., Shopova S. I., Zhu H., Suter J. D., Sun Y.. Sensitive optical biosensors for unlabeled targets: a review. Analytica Chimica Acta, 2008, 620(1–2): 8-26.

[6]

Daghestani H. N., Day B. W.. Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. Sensors, 2010, 10(11): 9630-9646.

[7]

Sathish M., Talabattula S.. Polarization analysis of an asymmetrically etched rib waveguide coupler for sensing applications. Photonic Sensors, 2013, 3(2): 178-183.

[8]

Zhang J. H., Chen F. S., Sun B., Chen K. X.. Integrated optical waveguide sensor for lighting impulse electric field measurement. Photonic Sensors, 2014, 4(3): 215-219.

[9]

Qi Z., Matsuda N., Itoh K., Murabayashi M., Lavers C. R.. A design for improving the sensitivity of a Mach-Zehnder interferometer to chemical and biological measurands. Sensors and Actuators B: Chemical, 2002, 81(2–3): 254-258.

[10]

Dante S., Duval D., Sepúlveda B., González-Guerrero A. B., Sendra J. R., Lechuga L. M.. All-optical phase modulation for integrated interferometric biosensors. Optics Express, 2012, 20(7): 7195-7205.

[11]

Yang T. F.. Optimal design and fabrication of polymeric planar optical waveguide bio-chemical sensor, 2014

[12]

Densmore A., Xu D. X., Janz S., Waldron P., Mischki T., Lopinski G., . Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response. Optics Letters, 2008, 33(6): 596-598.

[13]

Liu Q., Tu X., Kim K. W., Kee J. S., Shin Y., Han K., . Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sensors and Actuators B: Chemical, 2013, 188(11): 681-688.

[14]

Levy R., Ruschin S.. Critical sensitivity in hetero-modal interferometric sensor using spectral interrogation. Optics Express, 2008, 16(25): 20516-20521.

[15]

Levy R., Ruschin S., Goldring D.. Critical sensitivity effect in an interferometer sensor. Optics Letters, 2009, 34(19): 3023-3025.

[16]

Hutter T., Elliott S. R., Ruschin S.. Dynamic range enhancement and phase-ambiguity elimination in wavelength-interrogated interferometric sensor. Sensors and Actuators B: Chemical, 2013, 178(3): 593-597.

[17]

Ormocore Products, Micro Resist Technol. GmbH, Berlin, Germany, 2014.

[18]

Morarescu R., Pal P. K., Han X., Zhao M., Bienstman P., Morthier G.. Polymer microring resonators for biosensing applications by nanoimprint lithography. The 17th International Conference on Transparent Optical Networks, 2015 1-4.

[19]

Bruck R., Melnik E., Muellner P., Hainberger R., Lämmerhofer M.. Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding. Biosensors and Bioelectronics, 2011, 26(9): 3832-3837.

[20]

Sepúlveda B., Río J. S. D., Moreno M., Blanco F. J., Mayora K., Domínguez C., . Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices. Journal of Optics A: Pure and Applied Optics, 2006, 8(7): S561-S566.

[21]

Wang L. H., Ren J., Han X. Y., Claes T., Jian X. G., Bienstman P., . A label-free optical biosensor built on a low-cost polymer platform. IEEE Photonics Journal, 2012, 4(3): 920-930.

[22]

Soldano L. B., Pennings E. C. M.. Optical multi-mode interference devices based on self- imaging: principles and applications. Journal of Lightwave Technology, 1995, 13(4): 615-627.

[23]

Shao Y. C., Han X. Y., Han X. N., Lu Z. L., Wu Z. L., Teng J., . Optimal design of 850 nm 2×2 multimode interference polymer waveguide coupler by imprint technique. Photonic Sensors, 2016, 6(3): 234-242.

[24]

Han X. N., Han X. Y., Shao Y. C., Lu Z. L., Teng J., Wu Z. L., . Study on polymer microring optical biosensor based on slot waveguide. Acta Optical Sinica, 2016, 38(4): 04130011-04130018.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/