Design and optimization of the CFRP mirror components

Lei Wei , Lei Zhang , Xiaoxue Gong

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (3) : 270 -277.

PDF
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (3) : 270 -277. DOI: 10.1007/s13320-017-0388-2
Regular

Design and optimization of the CFRP mirror components

Author information +
History +
PDF

Abstract

As carbon fiber reinforced polymer (CFRP) material has been developed and demonstrated as an effective material in lightweight telescope reflector manufacturing recently, the authors of this article have extended to apply this material on the lightweight space camera mirror design and fabrication. By CFRP composite laminate design and optimization using finite element method (FEM) analysis, a spherical mirror with φ316 mm diameter whose core cell reinforcement is an isogrid configuration is fabricated. Compared with traditional ways of applying ultra-low-expansion glass (ULE) on the CFRP mirror surface, the method of nickel electroplating on the surface effectively reduces the processing cost and difficulty of the CFRP mirror. Through the FEM analysis, the first order resonance frequency of the CFRP mirror components reaches up to 652.3 Hz. Under gravity affection coupling with +5°C temperature rising, the mirror surface shape root-mean-square values (RMS) at the optical axis horizontal state is 5.74 nm, which meets mechanical and optical requirements of the mirror components on space camera.

Keywords

Pure-CFRP mirror / lay-up design / bipod / integrated optimization

Cite this article

Download citation ▾
Lei Wei, Lei Zhang, Xiaoxue Gong. Design and optimization of the CFRP mirror components. Photonic Sensors, 2016, 7(3): 270-277 DOI:10.1007/s13320-017-0388-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

He B., Li Z. L.. Design of the strip SiC mirror supporting structure and lightweight. Optical Technique, 2008, 4(34): 593-596.

[2]

Willis P. B., Coulter D. R.. Durability and reliability of lightweight composite mirrors for space optical systems. SPIE, 1993, 1993, 127-136.

[3]

Jungwirth M. E. L., Wilcox C. C., Wick D. V., Robichaud J., Romeo R. C., Martin R. N., . Large-aperture active optical carbon fiber reinforced polymer mirror. SPIE, 2013, 8725, 1-11.

[4]

Wilcox C. C., Jungwirth M. E. L., Wick D. V., Romeo R. C., Martin R. N.. Closed-loop performance of an actuated deformable carbon fiber reinforced polymer mirror. SPIE, 2012 8373.

[5]

Kendrew S., Doel P.. Development of a carbon fibler composite active mirror: design and testing. Optical Engineering, 2006, 45(3): 535-545.

[6]

Doel P., Kendrew S., Brooks D., Dorn C., Yates C., Martin R. D., . Development of an active carbon fiber composite mirror. SPIE, 2004, 5490, 1526-1533.

[7]

Jungwirth M. E. L., Baker M., Wick D. V., Wilcox C. C., Romeo R. C., Martin R. D., . Actuation for carbon fiber reinforced polymer active optical mirrors. Proc. of 2012 IEEE Aerospace Conference, 2012 1-9.

[8]

Arao Y., Koyanagi J., Utsunomiya S., Takeda S. I., Kawada H.. Analysis of time-dependent deformation of a CFRP mirror under hot and humid conditions. Mechanics of Time-Dependent Materials, 2009, 13(2): 183-197.

[9]

Tanaka S., Ikeda T., Senba A.. Sensitivity analysis of thermal deformation of CFRP laminate reflector due to fiber orientation error. Journal of Mechanical Science & Technology, 2016, 30(10): 4423-4426.

[10]

Chen P. C., Saha T. T., Smith A. M., Romeo R.. Progress in very lightweight optics using graphite fiber composite materials. Optical Engineering, 1998, 37(2): 666-676.

[11]

Romeo R. C., Martin R. D.. Final assembly of the ULTRA 1-m carbon fiber optical telescope. SPIE, 2007, 6665, 1-10.

[12]

Romeo R. C., Martin R. D.. Progress in 1m-class lightweight CFRP composite mirrors for the ULTRA telescope. SPIE, 2006, 6273, 1-12.

[13]

Martin R. D., Romeo R. C.. Lightweight optical telescope structures fabricated from CFRP composites. SPIE, 2007, 6665, 1-7.

[14]

Peng W. C., Sun S. L., Chen G. L., Sun L. W., Zhang P. J.. Carbon fiber reinforced composites for lightweight optical mirrors. Optical Technique, 2006, 8(32): 138-142.

[15]

Zhao H., Fan X. W., Pang Z. H., Ren G. T., Wang W., Xie Y. J., . Carbon-fiber-reinforced polymer variable-curvature mirror used for optical zoom imaging: prototype design and experimental demonstration. Optical Engineering, 2015, 54(2): 025103.

[16]

Krumweide D. E., Wonacott G. D., Woida P. M., Woida R. Q., Shih W.. Carbon-carbon mirrors for exoatmospheric and space applications. SPIE, 2007, 6666, 1-8.

[17]

Utsunomiya S., Kamiya T., Shimizu R.. CFRP composite mirrors for space telescopes and their micro-dimensional stability. SPIE, 2010, 7739, 1-7.

[18]

Barber G. J., Braem A., Brook N. H., Cameron W., D’Ambrosio C., Harnew N., . Development of lightweight carbon-fiber mirrors for the RICH 1 detector of LHCb. Nuclear Instruments and Methods in Physics Research, 2008, 593(3): 624-637.

[19]

Chen P. C., Bowers C. W., Content D. A., Marzouk M., Romeo R. C.. Advances in very lightweight composite mirror technology. Optical E ngineering, 2000, 39(9): 2320-2329.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/