Electromagnetic resonant properties of metal-dielectric-metal (MDM) cylindrical microcavities

Hang Heng , Rong Wang

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (2) : 148 -156.

PDF
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (2) : 148 -156. DOI: 10.1007/s13320-017-0379-3
Regular

Electromagnetic resonant properties of metal-dielectric-metal (MDM) cylindrical microcavities

Author information +
History +
PDF

Abstract

Optical metamaterials can concentrate light into extremely tiny volumes to enhance their interaction with quantum objects. In this paper, a cylindrical microcavity based on the Au-dielectric-Au sandwiched structure is proposed. Numerical study shows that the cylindrical microcavity has the strong ability of localizing light and confining 103– − 104–fold enhancement of the electromagnetic energy density, which contains the most energy of the incoming light. The enhancement factor of energy density G inside the cavity shows the regularities as the change in the thickness of the dielectric slab, dielectric constant, and the radius of gold disk. At the normal incidence of electromagnetic radiation, the obtained reflection spectra operate in the range from 4.8 μm to 6 μm and with the absorption efficiency C (C=1–R min), which can reach 99% by optimizing the structure’s geometry parameters, and the dielectric constant. Due to the symmetry of the cylindrical microcavities, this structure is insensitive to the polarization of the incident wave. The proposed optical metamaterials will have potential applications in the surface enhanced spectroscopy, new plasmonic detectors, bio-sensing, solar cells, etc.

Keywords

Microcavity / metal-semiconductor-metal / metamaterial

Cite this article

Download citation ▾
Hang Heng, Rong Wang. Electromagnetic resonant properties of metal-dielectric-metal (MDM) cylindrical microcavities. Photonic Sensors, 2016, 7(2): 148-156 DOI:10.1007/s13320-017-0379-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu G. Q., Tang F. L., Li L., Gong L. X., Ye Z. Q.. Concentration detection of quantum dots in the visible and near-infrared range based on surface plasmon resonance sensor. Materials Letters, 2011, 65(12): 1998-2000.

[2]

Yang Y. Y., Zhang Y. L., Jin F., Dong X. Z., Duan X. M.. Steering the optical response with asymmetric bowtie 2-color controllers in the visible and near infrared range. Optics Communications, 2011, 284(13): 3474-3478.

[3]

Owens D., Fuentes-Hernandez C., Kippelen B.. Optical properties of one-dimensional metal- dielectric photonic band-gap structures with low index dielectrics. Thin Solid Films, 2009, 517(8): 2736-2741.

[4]

Seo J. Y., Cho S., Lim H., Lee S.. Optical and structural properties of metal-dielectric photonic band gap structures. Current Applied Physics, 2006, 6(6): 62-66.

[5]

El-Khoury P. Z., Bylaska E. J., Hess W. P.. Time domain simulations of chemical bonding effects in surface-enhanced spectroscopy. Journal of Chemical Physics, 2013, 139(17): 174303.

[6]

Du C. L., Du C. J., You Y. M., Zhu Y., Jin S. L., He C. J., . Numerically investigating the enhanced Raman scattering performance of individual Ag nanowire tips. Applied Optics, 2011, 50(25): 4922-4926.

[7]

Zhu L., Dong L., Meng F. Y., Fu J. H., Wu Q.. Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application. Applied Optics, 2012, 51(32): 7794-7799.

[8]

Ebbesen T. W., Lezec H. J., Ghaemi H. F., Thio T., Wolff P. A.. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 2001, 86(6): 1114-1117.

[9]

Ghaemi H. F., Thio T., Grupp D. E.. Surface plasmons enhance optical transmission through subwavelength holes. Physical Review B, 1998, 58(11): 357-368.

[10]

Haes A. J., Zou S. L., Schatz G. C., Van Duyne R. P.. Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. Journal of Physical Chemistry B, 2003, 108(22): 6961-6968.

[11]

Kabashin A. V., Sergiy P., Grigorenko A. N.. Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Optics Express, 2009, 17(23): 21191-21204.

[12]

Shelby R. A., Smith D. R., Schultz S.. Experimental verification of a negative index of refraction. Science, 2001, 292(292): 77-79.

[13]

Wu J., Ng B., Turaga S. P., Breese M. B. H., Maier S. A., Hong M., . Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index. Applied Physics Letters, 2013, 103(14): 141106.

[14]

Dolling G., Wegener M., Soukoulis C. M., Linden S.. Negative-index metamaterial at 780 nm wavelength. Optics Letters, 2007, 32(1): 53-55.

[15]

Zhao F. L., Kamil B. A., Evrim C., Ekmel O.. Complementary chiral metamaterials with giant optical activity and negative refractive index. Applied Physics Letters, 2011, 98(16): 161907.

[16]

Tomer R., Ye L., Hsueh B., Deisseroth K.. Advanced clarity for rapid and high-resolution imaging of intact tissues. Nature Protocols, 2014, 9(7): 1682-1697.

[17]

Taubner T., Korobkin D., Urzhumov Y., Shvets G., Hillenbrand R.. Near-field microscopy through a SiC superlens. Science, 2006, 313(5793): 1595-1595.

[18]

Baida F. I., Boutria M., Oussaid R., Van Labeke D.. Enhanced-transmission metamaterials as anisotropic plates. Physical Review B, 2011, 82(3): 2109-2119.

[19]

Huang X. R., Peng R. W., Fan R. H.. Making metals transparent for white light by spoof surface plasmons. Physical Review Letters, 2010, 105(24): 119-127.

[20]

Fan R. H., Peng R.W., Huang X. R., Li J., Liu Y., Hu Q., . Transparent metalsfor ultrabroadband electromagnetic waves. Advanced Materials, 2012, 24(15): 1980-1986.

[21]

Grady N. K., Heyes J. E., Chowdhury D. R., Zeng Y., Reiten M. T., Azad A. K., . Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 2013, 340(6138): 1304-1307.

[22]

Kogelbauer I., Heine E., D’Amboise C., Müllebner C., Sokol W., Loiskandl W.. Adaptation of soil physical measurement techniques for the delineation of mud and lakebed sediments at neusiedler see. Sensors, 2013, 13(12): 17067-17083.

[23]

Fevillet-Palma C., Todorov Y., Steed R., Vasanelli A., Biasiol G., Sorba L., . Extremely sub-wavelength THz metal-dielectric wire microcavities. Optics Express, 2012, 20(27): 29121-29130.

[24]

Todorov Y., Tosetto L., Teissier J., Andrews A. M., Klang P., Colombelli R., . Optical properties of metal-dielectric-metal microcavities in the THz frequency range. Optics Express, 2010, 18(13): 13886-13907.

[25]

Fevillet-Palma C., Todorow Y., Vasanelli A., Sirtori C.. Strong near field enhancement in THz nano-antenna arrays. Sientific Reports, 2013, 3(1): 299-308.

[26]

Wang X. D., Ye Y. H., Zhang C., Qin Y., Cui T. J.. Tunable figure of merit for a negative-index metamaterial with a sandwich configuration. Optics Letters, 2009, 34(22): 3568-3570.

[27]

Chen K., Wen Q. Y., Znang H. B.. Study on the broadband terahertz metamaterial absorber. Electronic Components and Materials, 2011, 30(7): 56-59.

[28]

Landy N. I., Sajuyigbe S., Mock J. J., Smith D. R., Padilla W. J.. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 1586-1594.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/