Powerful narrow linewidth random fiber laser

Jun Ye , Jiangming Xu , Hanwei Zhang , Pu Zhou

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (1) : 82 -87.

PDF
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (1) : 82 -87. DOI: 10.1007/s13320-016-0361-5
Regular

Powerful narrow linewidth random fiber laser

Author information +
History +
PDF

Abstract

In this paper, we demonstrate a narrow linewidth random fiber laser, which employs a tunable pump laser to select the operating wavelength for efficiency optimization, a narrow-band fiber Bragg grating (FBG) and a section of single mode fiber to construct a half-open cavity, and a circulator to separate pump light input and random lasing output. Spectral linewidth down to 42.31 GHz is achieved through filtering by the FBG. When 8.97 W pump light centered at the optimized wavelength 1036.5 nm is launched into the half-open cavity, 1081.4 nm random lasing with the maximum output power of 2.15 W is achieved, which is more powerful than the previous reported results.

Keywords

Random fiber laser / distributed feedback / Rayleigh scattering / Raman scattering

Cite this article

Download citation ▾
Jun Ye, Jiangming Xu, Hanwei Zhang, Pu Zhou. Powerful narrow linewidth random fiber laser. Photonic Sensors, 2016, 7(1): 82-87 DOI:10.1007/s13320-016-0361-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ambartsumyan R. V., Basov N. G., Kryukov P. G., Letokov V. S.. Laser with nonresonant feedback. Soviet Journal of Experimental & Theoretical Physics, 1966, 3(2): 167.

[2]

Markushev V., Zolin V., Briskina C. M.. Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders. Soviet Journal of Quantum Electronics, 1986, 16(2): 427-430.

[3]

Hsu H. C., Wu C. Y., Hsieh W. F.. Stimulated emission and lasing of random-growth oriented ZnO nanowires. Journal of Applied Physics, 2005, 97(6): 064315.

[4]

Frolov S. V., Shkunov M., Fujii A., Yoshino K., Vardeny Z. V.. Lasing and stimulated emission in p-conjugated polymers. IEEE Journal of Quantum Electronics, 2000, 36(1): 2-11.

[5]

Sugavanam S., Tarasov N., Shu X., Churkin D. V.. Narrow-band generation in random distributed feedback fiber laser. Optics Express, 2013, 21(14): 16466-16472.

[6]

Turitsyn S. K., Babin S. A., Churkin D. V., Vatnik I. D., Nikulin M., Podivilov E. V.. Random distributed feedback fibre lasers. Physics Reports, 2014, 542(2): 133-193.

[7]

Matos C. J., De S. M. L., Brito-Silva A. M., Gámez M. A. M., Gomes A. S., Araújo C. B.. Random fiber laser. Physical Review Letters, 2007, 99(15): 153903.

[8]

Hu Z., Miao B., Wang T., Fu Q., Zhang D., Ming H., . Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser. Optics Letters, 2013, 38(22): 4644-4647.

[9]

Lizárraga N., Puente N. P., Chaikina E. I., Leskova T. A., Méndez E. R.. Single-mode Er-doped fiber random laser with distributed Bragg grating feedback. Optics Express, 2009, 17(2): 395-404.

[10]

Turitsyn S. K., Babin S. A., El-Taher A. E., Harper P., Churkin D. V., Kablukov S. I., . Random distributed feedback fiber laser. Nature Photonics, 2010, 4(4): 231-235.

[11]

Zhang H., Zhou P., Xiao H., Xu X.. Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power. Laser Physics Letters, 2014, 11(7): 075104.

[12]

Du X., Zhang H., Wang X., Zhou P., Liu Z.. Short cavity-length random fiber laser with record power and ultrahigh efficiency. Optics Letters, 2016, 41(3): 571-574.

[13]

Babin S. A., El-Taher A. E., Harper P., Podivilov E. V., Turitsyn S. K.. Tunable random fiber laser. Physical Review A, 2011, 84(2): 4903-4911.

[14]

Du X., Zhang H., Wang X., Zhou P.. Tunable random distributed feedback fiber laser operating at 1 µm. Applied Optics, 2015, 54(4): 908-911.

[15]

El-Taher A. E., Harper P., Babin S. A., Churkin D. V., Podivilov E. V., Ania-Castanon J. D., . Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation. Optics Letters, 2011, 36(2): 130-132.

[16]

Du X., Zhang H., Wang X., Wang X., Zhou P., Liu Z.. Multiwavelength Raman fiber laser based on polarization maintaining fiber loop mirror and random distributed feedback. Laser Physics Letters, 2015, 12(4): 045106.

[17]

Zlobina E. A., Kablukov S. I., Babin S. A.. Linearly polarized random fiber laser with ultimate efficiency. Optics Letters, 2015, 40(17): 4074-4077.

[18]

Du X., Zhang H., Wang X., Zhou P., Liu Z.. Investigation on random distributed feedback Raman fiber laser with linear polarized output. Photonics Research, 2015, 3(2): 28-31.

[19]

Jia X. H., Rao Y. J., Peng F., Wang Z. N., Zhang W. L., Wu H. J., . Random-lasing-based distributed fiber-optic amplification. Optics Express, 2013, 21(5): 6572-6577.

[20]

Wang Z. N., Rao Y. J., Wu H., Li P. Y., Jiang Y., Jia X. H., . Long-distance fiber-optic point-sensing systems based on random fiber lasers. Optics Express, 2012, 20(16): 17695-17700.

[21]

Zhang W. L., Rao Y. J., Zhu J. M., Yang Z. X., Wang Z. N., Jia X. H.. Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity. Optics Express, 2012, 20(13): 14400-14405.

[22]

Pang M., Bao X., Chen L.. Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser. Optics Letters, 2013, 38(11): 1866-1868.

[23]

Li Y., Lu P., Bao X., Ou Z.. Random spaced index modulation for a narrow linewidth tunable fiber laser with low intensity noise. Optics Letters, 2014, 39(8): 2294-2297.

[24]

Smirnov S. V., Churkin D. V.. Modeling of spectral and statistical properties of a random distributed feedback fiber laser. Optics Express, 2013, 21(18): 21236-21241.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/