Effects of rubber shock absorber on the flywheel micro vibration in the satellite imaging system

Changcheng Deng , Deqiang Mu , Xuezhi Jia , Zongxuan Li

Photonic Sensors ›› 2015, Vol. 6 ›› Issue (4) : 372 -384.

PDF
Photonic Sensors ›› 2015, Vol. 6 ›› Issue (4) : 372 -384. DOI: 10.1007/s13320-016-0349-1
Regular

Effects of rubber shock absorber on the flywheel micro vibration in the satellite imaging system

Author information +
History +
PDF

Abstract

When a satellite is in orbit, its flywheel will generate micro vibration and affect the imaging quality of the camera. In order to reduce this effect, a rubber shock absorber is used, and a numerical model and an experimental setup are developed to investigate its effect on the micro vibration in the study. An integrated model is developed for the system, and a ray tracing method is used in the modeling. The spot coordinates and displacements of the image plane are obtained, and the modulate transfer function (MTF) of the system is calculated. A satellite including a rubber shock absorber is designed, and the experiments are carried out. Both simulation and experiments results show that the MTF increases almost 10 %, suggesting the rubber shock absorber is useful to decrease the flywheel vibration.

Keywords

Micro vibration / flywheel / rubber shock absorber / integrated modeling / MTF / isolation experiment

Cite this article

Download citation ▾
Changcheng Deng, Deqiang Mu, Xuezhi Jia, Zongxuan Li. Effects of rubber shock absorber on the flywheel micro vibration in the satellite imaging system. Photonic Sensors, 2015, 6(4): 372-384 DOI:10.1007/s13320-016-0349-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wei Z., Li D., Luo Q., Jiang J.. Modeling and analysis of a flywheel microvibration isolation system for spacecrafts. Advances in Space Research, 2015, 55(2): 761-777.

[2]

Lee D. O., Park G., Han J. H.. Experimental study on on-orbit and launch environment vibration isolation performance of a vibration isolator using bellows and viscous fluid. Aerospace Science and Technology, 2015, 45, 1-9.

[3]

Liu C., Jing X., Daley S., Li F.. Recent advances in micro-vibration isolation. Mechanical System and Signal Processing, 2015, 56(1): 55-80.

[4]

Geethamma V. G., Asaletha R., Kalarikkal N., Thomas S.. Vibration and sound damping in polymers. Resonance, 2014, 19(9): 821-833.

[5]

Abdulhadi M.. Stiffness and damping cofficients of rubber. Archive of Applied Mechanics, 1985, 55(6): 421-427.

[6]

Klenke S. E., Baca T. J.. Structural dynamics test simulation and optimization for aerospace components. Expert Systems with Applications, 1996, 11(4): 82-89.

[7]

Dixon J. C.. The shock absorber handbook, 2007, New York: SAE International

[8]

Njuguna J., Pielichowski K.. The role of advanced polymer materials in aerospace. Research Gate, 2013 1-48.

[9]

Dall’Asta A., Ragni L.. Nonlinear behavior of dynamic systems with high damping rubber devices. Engineering Structure, 2008, 30(12): 3610-3618.

[10]

Nelson D. W., Nelson N. W.. Finite element analysis in design with rubber. Chemistry and Technology, 1990, 63(3): 368-406.

[11]

Hughes T. J. R.. The finite element method: linear static and dynamic finite element analysis, 2000, New Jersey: Prentice Hall

[12]

Chen L.. Numerical methods for analysing static characteristics of rubber isolator. Journal of Vibration and Shock, 2005, 25(123–124): 56-61.

[13]

Sjoberg M.. On dynamic properties of rubber isolators. Ph.D. dissertation, Kungliga Tekniska högskolan, 2002

[14]

Sjoberg M.. Rubber isolators measurements and modelling using fractional derivatives and friction. SAE Technical Paper, 2000, 1(3518): 133-144.

[15]

Lieber M. D.. Space-based optical system performance evaluation with integrated modeling tools. SPIE, 2004, 5420, 85-96.

[16]

LoBosco D. M., Blaurock C., Chung S. J., Miller D. W.. Integrated modeling of optical performance for the Terrestrial Planet Finder structurally connected interferometer. SPIE, 2004, 5497, 278-289.

[17]

Weck O. L. D., Miller D. W., Mallory G. J., Mosier G. E.. Integrated modeling and dynamics simulation for the next generation space telescope (NGST). SPIE, 2000, 4013, 920-934.

[18]

Zhou W., Li D.. Experimental research on a vibration isolation platform for momentum wheel assembly. Journal of Sound and Vibration, 2013, 332(5): 1157-1171.

[19]

Miller D. W., Weck O. L. D., Mosier G. E.. Framework for multidisciplinary integrated modeling and analysis of space telescope. Integrated Modeling of Telescopes, 2002, 4757, 1-18.

[20]

Elias L. M., Dekens F. G., Basdogan I., Sievers L. A.. Methodology for modeling the mechanical interaction between a reaction wheel and a flexible structure. SPIE, 2003, 4852, 541-555.

[21]

Lee D. O., Yoon J. S., Han J. H.. Development of integrated simulation tool for jitter analysis. International Journal of Aeronautical and Space Sciences, 2012, 13(1): 64-73.

[22]

Glassner A. S.. An introduction to ray tracing. Morgan Kaufmann Publishers, 1989, 34(2): 417-417.

[23]

Katz M.. Introduction to geometrical optics, 2002, New Jersey: World Scientific

[24]

Yang H. T., Cao J. Z., Fan Z. Y., Chen W. N.. The research of the high precision universal stable reconnaissance platform in near space. International Symposium on Photoelectronic Detection and Imaging, 2011, 8196(3): 111-116.

[25]

Hadden S., Davis T., Buchele P., Boyd J., Hintz T. L.. Heavy load vibration isolation system for airborne payloads. SPIE, 2001, 4332, 171-182.

[26]

Zhang B., Wang X., Hu Y.. Integrated modeling and optical jitter analysis of a high resolution space camera. SPIE, 2012, 8415, 841508-1–841508–7.

[27]

Hadar O., Kopeika N. S.. Numerical calculation of MTF for image motion: experimental verification. SPIE, 1992, 1697, 183-197.

[28]

Hadar O., Dror I., Kopeika N. S.. Real-time numerical calculation of optical transfer function for image motion and vibration. Part 1: experimental verification. Optical Engineering, 1997, 33(2): 566-578.

[29]

Zhou W., Dongxu L., Luo Q., Liu K.. Analysis and testing of microvibrations produced by momentum wheel assemblies. Chinese Journal of Aeronautics, 2012, 25(4): 640-649.

[30]

Zhou W. Y., Aglietti G. S., Zhang Z.. Modelling and testing of a soft suspension design for a reaction/momentum wheel assembly. Journal of Sound and Vibration, 2011, 330(18): 4596-4610.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/