Performance analysis of 112 Gb/s×4-channel WDM PDM-DQPSK optical label switching system with spectral amplitude code labels

Isaac Adjaye Aboagye , Fushen Chen , Yongsheng Cao

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (1) : 88 -96.

PDF
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (1) : 88 -96. DOI: 10.1007/s13320-016-0345-5
Regular

Performance analysis of 112 Gb/s×4-channel WDM PDM-DQPSK optical label switching system with spectral amplitude code labels

Author information +
History +
PDF

Abstract

We present the performance analysis of 112 Gb/s×4 wavelength division multiplexing (WDM) 100 GHz channel spacing polarization division multiplexed-differential quadrature phase shift keying (PDM-DQPSK) optical label switching system with frequency swept coherent detected spectral amplitude code labels. Direct detection is chosen to demodulate the payload by applying a polarization tracker, while 4-bits of 156 Mb/s spectral amplitude code label is coherently detected with a scheme of frequently-swept coherent detection. We optimize the payload laser linewidth as well as the frequency spacing between the payload and label. The label and payload signal performances are assessed by the eye-diagram opening factor (EOF) and bit-error rate (BER) at 10–9 as a function of the received optical power (ROP) and the optical signal to noise ratio (OSNR). The payload could well be demodulated after 900 km at a bit error rate of 10‒3 using forward error correction (FEC).

Keywords

Optical label switching (OLS) / polarization division multiplexed (PDM) / spectral amplitude code (SAC) / wavelength division multiplexing (WDM)

Cite this article

Download citation ▾
Isaac Adjaye Aboagye, Fushen Chen, Yongsheng Cao. Performance analysis of 112 Gb/s×4-channel WDM PDM-DQPSK optical label switching system with spectral amplitude code labels. Photonic Sensors, 2016, 7(1): 88-96 DOI:10.1007/s13320-016-0345-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Patel G. H., Patel R. B., Patel S. J.. Dispersion compensation in 40Gb/s WDM network using dispersion compensating fiber. Journal of Information, Knowledge and Research in Electronics and Communication Engineering, 2013, 02, 662-665.

[2]

Vlachos K. G., Monroy I. T., Koonen A. M. J., Peucheret C.. STOLAS: switching technologies for optically labelled signals. IEEE Optical Communications, 2003, 41(11): 9-15.

[3]

Agrawal G. P.. Nonlinear fiber optics, 2001, New York: Academic Press

[4]

Agrawal G. P.. Applications of nonlinear fiber optics, 2001, New York: Academic Press

[5]

Seddighian P., Ayotee S., Fernandez J. B. R., Penon J., Rusch L. A., Larochelle S.. Label stacking in photonic packet switched networks with spectral amplitude code labels. Journal of Lightwave Technology, 2007, 25(2): 463-471.

[6]

Fernandez J. B. R., Huang G., Aw E. T., Wonfor A., Penty R. V., White I. H.. Ultrafast FWM self-routing between 10 ports of spectral amplitude coded 10 Gb/s packets set on 25 GHz grid with unequally spaced bins. Proceeding of IEEE Optical Fiber Communication/National Fiber Optic Engineers Conference, 2008 1-3.

[7]

El-Sahn Z. A., Shastri B. J., Zeng M., Kheder N., Plant D. V., Rusch L. A.. Experimental demonstration of a SAC-CDMA PON with burst-mode reception: local versus centralized source. Journal of Lightwave Technology, 2008, 26(10): 1192-1203.

[8]

Olmos J. J. V., Zhang J. F., Nielsen P. V. H., Monror I. T., Polo V., Koonen A. M. J., . Simultaneous optical label erasure and insertion in a single wavelength conversion stage of combined FSK/IM modulated signals. IEEE Photonics Technology Letters, 2004, 16(9): 2144-2146.

[9]

Y. Cao, F. Chen, and Z. Yang “Frequency swept coherently detected spectral amplitude code for flexible implicit optical label switching,” Chinese Optics Letters, 2011, 9(7): 9–12.

[10]

Alhassan A. M., Badruddin N., Saad N. M., Aljunid S. A.. Beat noise mitigation through spatial multiplexing in spectral amplitude coding OCDMA networks. IEEE 4th International Conference on Photonics, 2013 169-171.

[11]

Eltaif T., Nicholas N., Alsaraj M. A., Hamida B. A.. Multi premises network based on spectral amplitude coding optical CDMA systems. IEEE/16th International Conference on Advanced Communication Technology, 2014 1080-1083.

[12]

Koch B., Mirvoda V., Grießer H., Wernz H., Sandel D., Noé R.. Endless optical polarization control at 56 krads, over 50 gigaradian, and demultiplex of 112-Gbs PDM-RZ-DQPSK signals at 3.5 krads. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(5): 1158-1163.

[13]

Ferrario M., Boffi P., Marazzi L., Martelli P., Parolari P., Martinelli M.. Impact of PDL-induced crosstalk on 100-Gbs polarization multiplexed RZ-DQPSK in PMD-affected metro networks. Optics Communications, 2011, 284(24): 5662-5664.

[14]

Xu Y., Li X., Yu J.. Simple scheme for PDM-QPSK payload generation in an optical label switching network. Journal of Optical Communications and Networking, 2016, 8(2): 53-57.

[15]

Cao Y., Osadchiy A. V., Xin X., Yin X., Yu C., Monroy I. T.. Recognition of spectral amplitude codes by frequency swept coherent detection for flexible optical label switching. Photonic Network Communications, 2010, 20(2): 131-137.

[16]

Feng Y., Wen H., Zhang H. Y., Zheng X. P.. 40-Gb/s PolMux-QPSK transmission using low-voltage modulation and single-ended digital coherent detection. Chinese Optics Letters, 2010, 8(10): 976-978.

[17]

Luis R. S., Puttnam B. J., Mendinueta J. M. D., Shinada S., Nakamura M., Kamio Y., . Digital signal processing for digital coherent self-homodyne detection. 19th OptoElectronics and Communication Conference and the 39th Australian Conference on Optical Fibre Technology, 2014 904-906.

[18]

Fischer J. K., Elschner R., Frey F., Hilt J., Kottke C., Schubert C., . Digital signal processing for coherent UDWDM passive optical Networks. Photonic Networks; 15 ITG Symposium, 2014 1-7.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/