Cost-effective fiber multiplexing system based on low coherence interferometers and application to temperature measurement

Meng Jiang , Zhongze Zhao , Kun Li , Zeming Wang , Yage Zhan , Hongying Zhou , Fu Yang

Photonic Sensors ›› 2015, Vol. 6 ›› Issue (4) : 318 -323.

PDF
Photonic Sensors ›› 2015, Vol. 6 ›› Issue (4) : 318 -323. DOI: 10.1007/s13320-016-0344-6
Regular

Cost-effective fiber multiplexing system based on low coherence interferometers and application to temperature measurement

Author information +
History +
PDF

Abstract

Based on the low-coherence interferometric principles, a cost-effective all-fiber Mach-Zehnder multiplexing system is proposed and demonstrated. The system consists of two interferometers: sensing interferometer and demodulation interferometer. By scanning an optical tunable delay line back and forth constantly with a stable speed, sensing fibers with different optical paths can be temporal interrogated. The system is experimentally proved to have a high performance with a good stability and low system noises. The multiplexing capacity of the system is also investigated. An experiment of measuring the surrounding temperature is carried out. A sensitivity of 12 μm/°C is achieved within the range of 20°C to 80°C. This low cost fiber multiplexing system has a potential application in the remote monitoring of temperature and strain in building structures, such as bridges and towers.

Keywords

Mach-Zehnder interferometer / low-coherence / multiplexing fiber system

Cite this article

Download citation ▾
Meng Jiang, Zhongze Zhao, Kun Li, Zeming Wang, Yage Zhan, Hongying Zhou, Fu Yang. Cost-effective fiber multiplexing system based on low coherence interferometers and application to temperature measurement. Photonic Sensors, 2015, 6(4): 318-323 DOI:10.1007/s13320-016-0344-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kosa N. B.. Key issues in selecting plastics optical fibers used in novel medical sensors. Proc. of SPIE, 1991, 1592, 114-121.

[2]

Gaillorenze T. G.. Optical fiber sensor technology. IEEE Journal of Quantum Electronics, 1982, 18(4): 626-665.

[3]

Spooncer R. C.. Sydenham P. H., Thorn R.. Fiber optics in instrumentation. Handbook of Measurement Science, 1992, Chichester. UK: Wiley, 1691-1720.

[4]

Chen H., Liang Y.. Analysis of tunable asymmetric fiber F-P cavity for fiber strain sensor edge-filter demodulation. Photonic Sensors, 2014, 4(4): 338-343.

[5]

Li Q., Chen H.. Design of fiber magnetic field sensor based on fiber Bragg grating Fabry-Perot cavity ring-down spectroscopy. Photonic Sensors, 2015, 5(2): 189-192.

[6]

Grattan K. T. V.. Fiber optic sensors-the way forward. Measurement: Journal of the International Measurement Confederation, 1987, 5, 122-134.

[7]

Dianov E. M., Vasiliev S. A., Kurkov A. S., Medvedkov O. I., Protopopov V. N.. In-fiber Mach-Zehnder interferometer based on a pair of long-period gratings. in 22th European Conference on Optical Communication, Oslo, 1996

[8]

Hand D. P., St P., Russell J.. Photo induced refractive-index changes in germanosilicate fiber. Optics Letters, 1990, 15(2): 102-104.

[9]

Brooks J. L., Wentworth R. H., Youngquist R. C., Tur M., Kim B. Y., Shaw H. J.. Coherence multiplexing of fiber-optic interferometricsensors. IEEE Journal of Lightwave Technology, 1985, 3(5): 1062-1072.

[10]

Sorin W. V., Baney D. M.. Multiplexed sensing using optical low-coherence reflectometry. IEEE Photonics Technology Letters, 1995, 7(8): 917-919.

[11]

Yuan L. B., Yang J.. Two-loop-based low-coherence multiplexing fiber optic sensor network with a Michealson optical path demodulator. Optics Letters, 2005, 30(6): 601-603.

[12]

Jin L., Zhang W. G., Tu Q. C., Dong X. Y.. Applications of interferential technique in designing optics fiber sensors. Laser and Optoelectronics Exhibition, 2004, 41(7): 54-55.

[13]

Butter C. D., Hocker G. B.. Fiber optic strain gauge. Applied Optics, 1978, 17(18): 2867-2869.

[14]

Kidd S. R., Sinha P. G., Barton J. S., Jones J. D. C.. Interferometric fiber sensors for measurement of surface heat transfer rates on turbine blades. Optics and Lasers in Engineering, 1992, 16(2-3): 207-221.

[15]

Jansz P., Richardson S., Wild G., Hinckley S.. Modeling of low coherence interferometry using broadband multi-Gaussian light sources. Photonic Sensors, 2012, 2(3): 247-258.

[16]

Ma Y. Z., Sych Y., Onishchukov G., Ramachandran S., Peschel U., Schmauss B., . Fiber-modes and fiber-anisotropy characterization using low-coherence interferometry. Applied Physics B, 2009, 96(2): 345-353.

[17]

Born M., Wolf E.. Principles of optics, 1986, New York: Pergamon Press

[18]

Grattan K. T. V., Meggitt B. T.. Optoelectronics, imaging and sensing series: optical fiber sensor technology volume 2 devices and technology, 1998, London: Chapman & Hall, 169-171.

[19]

Hu X. Z.. Fiber optic and fiber cable, 2007, Beijing: Publishing House of Electronics Industry, 24-243.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/