Optimal design of 850 nm 2×2 multimode interference polymer waveguide coupler by imprint technique

Yuchen Shao , Xiuyou Han , Xiaonan Han , Zhili Lu , Zhenlin Wu , Jie Teng , Jinyan Wang , Geert Morthier , Mingshan Zhao

Photonic Sensors ›› 2015, Vol. 6 ›› Issue (3) : 234 -242.

PDF
Photonic Sensors ›› 2015, Vol. 6 ›› Issue (3) : 234 -242. DOI: 10.1007/s13320-016-0341-9
Regular

Optimal design of 850 nm 2×2 multimode interference polymer waveguide coupler by imprint technique

Author information +
History +
PDF

Abstract

A 2×2 optical waveguide coupler at 850 nm based on the multimode interference (MMI) structure with the polysilsesquioxanes liquid series (PSQ-Ls) polymer material and the imprint technique is presented. The influence of the structural parameters, such as the single mode condition, the waveguide spacing of input/output ports, and the width and length of the multimode waveguide, on the optical splitting performance including the excess loss and the uniformity is simulated by the beam propagation method. By inserting a taper section of isosceles trapezoid between the single mode and multimode waveguides, the optimized structural parameters for low excess loss and high uniformity are obtained with the excess loss of‒0.040 dB and the uniformity of‒0.007 dB. The effect of the structure deviations induced during the imprint process on the optical splitting performance at different residual layer thicknesses is also investigated. The analysis results provide useful instructions for the waveguide device fabrication.

Keywords

Polymer waveguide / coupler / multimode interference

Cite this article

Download citation ▾
Yuchen Shao, Xiuyou Han, Xiaonan Han, Zhili Lu, Zhenlin Wu, Jie Teng, Jinyan Wang, Geert Morthier, Mingshan Zhao. Optimal design of 850 nm 2×2 multimode interference polymer waveguide coupler by imprint technique. Photonic Sensors, 2015, 6(3): 234-242 DOI:10.1007/s13320-016-0341-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cahill L. W., Le T. T.. Optical signal processing using MMI elements. 10th Anniversary International Conference on Transparent Optical Networks, 2008, 4, 114-117.

[2]

Zhou H. F., Song J. F., Li C., Zhang H. J., Lo P. G.. A library of ultra-compact multimode interference optical couplers on SOI. IEEE Photonics Technology Letter, 2013, 25(12): 1149-1152.

[3]

Lu L., Zhou L., Li S., Li Z., Li X., Chen J.. 4 × 4 nonblocking silicon thermo-optic switches based on multimode interferometers. Journal of Lightwave Technology, 2015, 33(4): 857-864.

[4]

Xie N., Hashimoto T., Utaka K.. Very low-power, polarization-independent, and high-speed polymer thermooptic switch. IEEE Photonics Technology Letters, 2009, 21(24): 1861-1863.

[5]

Al-Hetar A. M., Mohammad A. B., Supa’at A. S. M., Shamsan Z. A.. MMI-MZI polymer thermo-optic switch with a high refractive index contrast. Journal of Lightwave Technology, 2011, 29(2): 171-178.

[6]

Chuang R. W., Hsu M. T., Chang Y. C., Lee Y. J., Chou S. H.. Integrated multimode interference coupler-based Mach-Zehnder interferometric modulator fabrication a silicon-on-insulator substrate. IET Optoelectronics, 2012, 6(3): 147-152.

[7]

Jin L., Wang J. W., Fu X., Yang B., Shi Y. C., Dai D. X.. High-Q microring resonators with 2 × 2 angled multimode interference couplers. IEEE Photonics Technology Letters, 2013, 25(6): 612-614.

[8]

Leidner J. P., Marciante J. R.. Tapered multi-mode interference waveguide for high-power self-organizing single-mode semiconductor laser arrays. IEEE Journal Quantum Electronics, 2011, 47(7): 965-971.

[9]

Jeong S. H., Morito K.. Compact optical 90° hybrid employing a tapered 2×4 MMI coupler serially connected by a 2×2 MMI coupler. Optics Express, 2010, 18(5): 4275-4288.

[10]

Ma H., Jen A. K. Y., Dalton L. R.. Polymer-based optical waveguides: materials, processing, and devices. Advanced Materials, 2002, 14(19): 1339-1365.

[11]

Guo L. J.. Recent progress in nanoimprint technology and its applications. Journal of Physics D: Applied Physics, 2004, 37(11): R123-R141.

[12]

Wang J., Zawadzki C., Mettbach N., Brinker W., Zhang Z. Y., Schmidt D., . Polarization insensitive 25-Gbaud direct D(Q)PSK receiver based on polymer planar lightwave hybrid integration platform. Optics Express, 2011, 19(13): 12197-12207.

[13]

Zhang Z., Maese-Nove A., Polatynski A., Mueller T., Irmscher G., Felipe D., . Colorless, dual-polarization 90° hybrid with integrated VOAs and local oscillator on polymer platform. Optical Fiber Communications Conference and Exhibition, 2015, TH1F3, 1-3.

[14]

Bamiedakis N., Hashim A., Penty R. V., White I. H.. A 40 Gb/s optical bus for optical backplane interconnections. Journal of Lightwave Technology, 2014, 32(8): 1526-1537.

[15]

Wang J., Kroh M., Theurer A., Zawadzki C., Schmidt D., Ludwig R., . Dual-quadrature coherent receiver for 100G Ethernet applications based on polymer planar lightwave circuit. Optics Express, 2011, 19(26): B166-B172.

[16]

Wang L., Ren J., Han X., Class T., Jian X., Bienstman P., . A label-free optical biosensor built on a low cost polymer platform. IEEE Photonics Journal, 2012, 4(3): 920-930.

[17]

Delezoide C., Salsac M., Lautru J., Leh H., Nogues C., Zyss J., . Vertically coupled polymer micro-racetrack resonators for label-free biochemical sensors. IEEE Photonics Technology Letters, 2012, 24(4): 270-272.

[18]

Ren J., Wang L., Han X., Cheng J. F., Lv H. L., Wang J. Y., . Organic silicone sol-gel polymer as non-covalent carrier of receptor proteins for label-free optical biosensor application. ACS Applied Materials & Interfaces, 2013, 5(2): 386-894.

[19]

Schmidt S., Flueckiger J., Wu W. X., Grist S. M., Fard S. T., Donzella V., . Improving the performance of silicon photonic rings, disks, and Bragg gratings for use in label-free biosensing. SPIE, 2014, 9166(91660M): 1-38.

[20]

Salleh M. H., Glidle A., Sorel M., Reboud J., Cooper J. M.. Polymer dual ring resonators for label-free optical biosensing using microfluidics. Chemical Communications, 2013, 49(30): 3095-3097.

[21]

Halldorsson J., Arnfinnsdottir N. B., Arnfinnsdottir A. B., Agnarsson B., Leosson K.. High index contrast polymer waveguide platform for integrated biophotonics. Optics Express, 2010, 18(15): 16217-16226.

[22]

Wang X. B., Sun J., Liu Y. F., Sun J. W., Chen C. M., Sun X. Q., . 650-nm 1×2 polymeric thermo-optic switch with low power consumption. Optics Express, 2014, 22(9): 11119-11128.

[23]

Kou L., Labrie D., Chylek P.. Refractive indices of water and ice in the 0.65-to 2.5-µm spectral range. Applied Optics, 1993, 32(19): 3531-3540.

[24]

Wang F., Yang J. Y., Chen L. M., Jiang X. Q., Wang M. H.. Optical switch based on multimode interference coupler. IEEE Photonics Technology Letters, 2006, 18(2): 421-423.

[25]

Yang L., Yang B., Sheng Z., Wang J. W., Dai D. X., He S. L.. Compact 2×2 tapered multimode interference couplers based on SU-8 polymer rectangular waveguides. Applied Physics Letters, 2008, 93(20): 2033041-2033043.

[26]

Jin L., Wang J. W., Fu X., Yang B., Shi Y. C., Dai D. X.. High-Q microring resonators with 2 × 2 angled multimode interference couplers. IEEE Photonics Technology Letter, 2013, 25(6): 612-614.

[27]

Xie N., Hashimoto T., Utaka K.. Design and performance of low-power, high-speed, polarization-independent and wideband polymer buried-channel waveguide thermo-optic switches. Journal of Lightwave Technology, 2014, 32(17): 3067-3072.

[28]

Dong J. L., Chiang K. S., Jin W.. Compact three-dimensional polymer waveguide mode multiplexer. Journal of Lightwave Technology, 2015, 33(22): 4580-4588.

[29]

Zhang H. B., Wang J. Y., Li L. K., Song Y., Zhao M. S., Jian X. G.. A study on liquid hybrid material for waveguides-synthesis and property of PSQ-Ls for waveguides. Journal of Macromolecular Science Part A, 2008, 45(3): 232-237.

[30]

Han X. Y., Wang L. H., Wang Y., Zou P., Gu Y. Y., Teng J., . UV-soft imprinted tunable polymer waveguide ring resonator for microwave photonic filtering. Journal of Lightwave Technology, 2014, 32(20): 3924-3932.

[31]

Soldano L. B., Pennings E. C. M.. Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 1995, 13(4): 615-627.

[32]

Wang J., Qi M. H., Xuan Y., Huang H. Y., Li Y., Li M., . Proposal for fabrication-tolerant SOI polarization splitter-rotator based on cascaded MMI couplers and an assisted bi-level taper. Optics Express, 2014, 22(23): 27869-27879.

[33]

Debnath K., Moore R., Liles A., O’Faolain L.. Toolkit for photonic integrated circuits based on inverted rib waveguides. Journal of Lightwave Technology, 2015, 33(19): 4145-4150.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/