Material measurement method based on femtosecond laser plasma shock wave

Dong Zhong , Zhongming Li

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (1) : 1 -10.

PDF
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (1) : 1 -10. DOI: 10.1007/s13320-016-0340-x
Regular

Material measurement method based on femtosecond laser plasma shock wave

Author information +
History +
PDF

Abstract

The acoustic emission signal of laser plasma shock wave, which comes into being when femtosecond laser ablates pure Cu, Fe, and Al target material, has been detected by using the fiber Fabry-Perot (F-P) acoustic emission sensing probe. The spectrum characters of the acoustic emission signals for three kinds of materials have been analyzed and studied by using Fourier transform. The results show that the frequencies of the acoustic emission signals detected from the three kinds of materials are different. Meanwhile, the frequencies are almost identical for the same materials under different ablation energies and detection ranges. Certainly, the amplitudes of the spectral character of the three materials show a fixed pattern. The experimental results and methods suggest a potential application of the plasma shock wave on-line measurement based on the femtosecond laser ablating target by using the fiber F-P acoustic emission sensor probe.

Keywords

Optical fiber sensing / femtosecond laser / plasma shock wave / acoustic signal / material testing

Cite this article

Download citation ▾
Dong Zhong, Zhongming Li. Material measurement method based on femtosecond laser plasma shock wave. Photonic Sensors, 2016, 7(1): 1-10 DOI:10.1007/s13320-016-0340-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anisimov S. I., Kapeliovich B. L., Perelman T. L.. Electron emission from metal surfaces exposed to ultrashort laser pules. Zhurnal Eksperimentalnoi I Teroreticheskoi Fiziki, 1974, 66(776): 776-781.

[2]

Rosencwaig A., Gersho A.. Theory of the photo acoustic effect with solids. Photoacoustic Effect: Vieweg, 1984, 1(6): 631-636.

[3]

J. S. Lv and H. Qi. “Multi-wavelength narrow line width fiber laser based on distributed feed back fiber lasers,” Photonic Sensors, 2016, 6(3): 256–260.

[4]

Blonskij V., Thaoryk V. A., Shendeleva M. L.. Thermal diffusivity of solids determination by photo acoustic piezoelectric technique. Journal of Applied Physics, 2003, 93(1): 790.

[5]

Sprangle P., Penano J. R., Hafizi B., Hubbard R. F., Ting A., Gordon D. F., . Propagation of ultra-short, intense laser pulses in air. Physics of Plasmas, 2004, 11(5): 2865-2874.

[6]

Chen J. K., Beraun J. E., Grimes L. E., Tzou D. Y.. Modeling of femtosecond laser-induced non-equibrium deformation in metal films. International Journal of Solids and Structures, 2002, 39(12): 3199-3216.

[7]

Leemans W. P., Nagler B., Gonsalves A. J., Toth C., Nakamura K., Geddes C. G. R., . GeV electron beams from a centimetre-scale accelerator. Nature Physics, 2006, 2(10): 696-699.

[8]

S. V. Garnov, V. V. Bukin, A. A. Malyutin, and V. V. Strelkov, “Ultra fast space time and spectrum time resolved diagnostics of multicharged femtosecond laser micro plasma,” in AIP Conference Proceedings, Hawaii, vol. 1153, pp. 37–48, 2009.

[9]

Ditlbacher H., Krenn J. R., Schider G., Leitner A., Aussenegg F.. Two-dimensional optics with surface plasmon polaritons. Applied Physics Letters, 2002, 81(10): 1762-1764.

[10]

D. Zhong and X. Tong. “Application research on hydraulic coke cutting monitoring system based on optical fiber sensing technology,” Photonic Sensors, 2014, 4(2): 147–151

[11]

Basharin A. Y., Dozhdikov V. S., Dubinchuk V. T., Kirillin A. V., Lysenko I. Y., Turchaninov M. A.. Phases formed during rapid quenching of liquid carbon. Technical Physics Letters, 2009, 35(5): 428-431.

[12]

Chen J., Conache G., Pistol M., Gray S., Borgström M. T., Xu H., . Probing strain in bent semiconductor nanowires with Raman spectroscopy. Nano Letters, 2010, 10(10): 1280-1286.

[13]

Tong X. L., Jiang D. S., Hu W. B., Liu Z. M., Luo M. Z.. The comparison between CdS thin films grown on Si (111) substrate and quartz substrate by femtosecond pulsed laser deposition. Applied Physics A, 2006, 84(1–2): 143-148.

[14]

Beresna M., Kazansky P. G., Svirko Y., Barkauskas M., Danielius R.. High average power second harmonic generation in air. Applied Physics Letters, 2009, 95(12): 121502.

[15]

Maede T., Ohmura E., Miyamoto I.. Analysis of key hole behavior in laser welding. Proceeding of 6th International Symposium of Japan Welding Society, 1998 104-105.

[16]

Nikoufard M., Alamouti M. K., Adel A.. Ultra-compact photonic crystal based water temperature-sensor. Photonic Sensors, 2016, 6(3): 274-278.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/