Multi-wavelength narrow linewidth fiber laser based on distributed feedback fiber lasers

Jingsheng Lv , Haifeng Qi , Zhiqiang Song , Jian Guo , Jiasheng Ni , Chang Wang , Gangding Peng

Photonic Sensors ›› 2015, Vol. 6 ›› Issue (3) : 256 -260.

PDF
Photonic Sensors ›› 2015, Vol. 6 ›› Issue (3) : 256 -260. DOI: 10.1007/s13320-016-0330-z
Regular

Multi-wavelength narrow linewidth fiber laser based on distributed feedback fiber lasers

Author information +
History +
PDF

Abstract

A narrow linewidth laser configuration based on distributed feedback fiber lasers (DFB-FL) with eight wavelengths in the international telecommunication union (ITU) grid is presented and realized. In this laser configuration, eight phase-shifted gratings in series are bidirectionally pumped by two 980-nm laser diodes (LDs). The final laser output with over 10-mW power for each wavelength can be obtained, and the maximum power difference within eight wavelengths is 1.2 dB. The laser configuration with multiple wavelengths and uniform power outputs can be very useful in large scaled optical fiber hydrophone fields.

Keywords

Multi-wavelength fiber laser / distributed feedback fiber laser / narrow linewidth fiber laser

Cite this article

Download citation ▾
Jingsheng Lv, Haifeng Qi, Zhiqiang Song, Jian Guo, Jiasheng Ni, Chang Wang, Gangding Peng. Multi-wavelength narrow linewidth fiber laser based on distributed feedback fiber lasers. Photonic Sensors, 2015, 6(3): 256-260 DOI:10.1007/s13320-016-0330-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cranch G. A., Flockhart G. M. H., Kirkendall C. K.. Comparative analysis of the DFB fiber laser and fiber-optic interferometric strain sensors. SPIE, 2007, 6619, 66192C.

[2]

Wang C., Wang C., Shang Y., Liu X., Peng G.. Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry. Optics Communications, 2015, 346, 172-177.

[3]

Cranch G. A., Kirkendall C. K., Daley K., Motley S., Bautista A., Salzano J., . Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array. IEEE Photonics Technology Letter, 2003, 15(11): 1579-1581.

[4]

Kringlebotn J. T., Archambault J. L., Reekie L., Payne D. N.. Er3+:Yb3+-codoped fiber distributed feedback laser. Optics Letter, 1994, 19(24): 2102-2103.

[5]

Li Q., Yan F., Peng W., Feng T., Feng S., Tan S., . DFB laser based on single mode large effective area heavy concentration EDF. Optics Express, 2012, 20(21): 23684-23689.

[6]

Qi H., Song Z., Li S., Wang C., Peng G.. Short distributed feedback fiber laser with unidirectional output for sensing applications. Chinese Optics Letter, 2013, 11(4): 44-46.

[7]

Qi H., Song Z., Guo J., Wang C., Peng G.. Apodized distributed feedback fiber laser with asymmetrical outputs for multiplexed sensing applications. Optics Express, 2013, 21(9): 11309-11314.

[8]

Foster S., Tikhomirov A., Englund M.. A 16 channel fibre laser sensor array. 18th Proc. ACOFT/AOS, 2006 40-42.

[9]

Léguillon Y., Tow K. H., Besnard P., Mugnier A., Pureur D., Doisy M.. First demonstration of a 12 DFB fiber laser array on a 100 GHz ITU grid, for underwater acoustic sensing application. SPIE, 2012, 8439, 84390J.

[10]

Qi H., Song Z., Guo J., Ni J., Wang C., Peng G.. Narrow-linewidth distributed feedback fiber laser with MOPA. Chinese Optics Letter, 2015, 13(S2): S21404.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/