Analysis of a plasmonic based optical fiber optrode with phase interrogation

H. Moayyed , I. T. Leite , L. Coelho , J. L. Santos , D. Viegas

Photonic Sensors ›› 2015, Vol. 6 ›› Issue (3) : 221 -233.

PDF
Photonic Sensors ›› 2015, Vol. 6 ›› Issue (3) : 221 -233. DOI: 10.1007/s13320-016-0329-5
Regular

Analysis of a plasmonic based optical fiber optrode with phase interrogation

Author information +
History +
PDF

Abstract

Optical fiber optrodes are attractive sensing devices due to their ability to perform point measurement in remote locations. Mostly, they are oriented to biochemical sensing, quite often supported by fluorescent and spectroscopic techniques, but with the refractometric approach considered as well when the objective is of high measurement performance, particularly when the focus is on enhancing the measurand resolution. In this work, we address this subject, proposing and analyzing the characteristics of a fiber optic optrode relying on plasmonic interaction. A linearly tapered optical fiber tip is covered by a double overlay: the inner one–a silver thin film and over it–a dielectric layer, with this combination allowing to achieve, at a specific wavelength range, surface plasmonic resonance (SPR) interaction sensitive to the refractive index of the surrounding medium. Typically, the interrogation of the SPR sensing structures is performed, considering spectroscopic techniques, but in principle, a far better performance can be obtained, considering the reading of the phase of the light at a specific wavelength located within the spectral plasmonic resonance. This is the approach which is studied here in the context of the proposed optical fiber optrode configuration. The analysis performed shows the combination of a silver inner layer with a dielectric titanium oxide layer with tuned thicknesses enables sensitive phase reading and allows the operation of the fiber optic optrode sensor in the third telecommunication wavelength window.

Keywords

Optrode / fiber sensing / surface plasmon resonance / phase interrogation / metallic-oxide coupled layers

Cite this article

Download citation ▾
H. Moayyed, I. T. Leite, L. Coelho, J. L. Santos, D. Viegas. Analysis of a plasmonic based optical fiber optrode with phase interrogation. Photonic Sensors, 2015, 6(3): 221-233 DOI:10.1007/s13320-016-0329-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Santos J. L., Farahi F.. Handbook of optical sensors, 2014

[2]

Janata J.. Principles of chemical sensing, 2009

[3]

Ligler F. S., Taitt Editors C. R.. Optical biosensors: today and tomorrow, 2011

[4]

Webster J. G., Eren Editors H.. Measurement, instrumentation and sensors handbook, 2014

[5]

Wood R. W., Mag P.. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proceedings of the Physical Society of London, 1902, 4, 396-402.

[6]

Rayleigh L.. On the dynamical theory of gratings. Proceedings of the Royal Society of London A Mathematical Physical & Engineering Sciences, 2010, 55(532): 399-416.

[7]

Fano U.. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (sommerfeld’s waves). Journal of the Optical Society of America, 1941, 31(3): 213-222.

[8]

Otto A.. Excitation of nonradiative surface plasma waves in silver by method of frustrated total reflection. Zeitschrift fur Physik A Hadrons & Nuclei, 1968, 216(4): 398-410.

[9]

Kretschmann E., Reather H.. Notizen: radiative decay of non radiative surface plasmons excited by light. Zeitschrift fur Naturforschung A, 2014, 23(12): 2135-2136.

[10]

Atwater H. A.. The promise of plasmonics. Scientific American, 2007, 296(4): 56-62.

[11]

Jorgenson R. C., Yee S. S.. A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B: Chemical, 1993, 12(3): 213-220.

[12]

Resurrection S. P.. Surface plasmon resurrection. Nature Photonics, 2012, 6(11): 707-794.

[13]

Raether H.. Surface plasmons on smooth and rough surfaces and on gratings, 1988

[14]

Homola J., Yee S. S., Gauglitz G.. Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 1999, 54(1–2): 3-15.

[15]

Homola J.. Present and future of surface plasmon resonance biosensors. Biosystems, 2003, 377(3): 528-539.

[16]

Suzuki H., Sugimoto M., Matsui Y., Kondoh J.. Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor. Sensors and Actuators B: Chemical, 2008, 132(1): 26-33.

[17]

Ozdemir S. K., Turhan-Sayan G.. Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor. Journal of Lightwave Technology, 2003, 21(3): 805-814.

[18]

Gwon H. R., Lee S. H.. Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration. Materials Transaction, 2010, 51(5): 1150-1155.

[19]

Li Y. C., Chang Y. F., Su L. C., Chou C.. Differential-phase surface plasmon resonance biosensor. Analytical Chemistry, 2008, 80(14): 5590-5595.

[20]

Chiang H. P., Lin J. L., Chen Z. W.. High sensitivity surface plasmon resonance sensor based on phase interrogation at optimal wavelengths. Applied Physics Letters, 2006, 88(14): 1411051-1411053.

[21]

Ng S. P., Wu C. M. L., Wu S. Y., Ho H. P.. White-light spectral interferometry for surface plasmon resonance sensing applications. Optics Express, 2011, 19(5): 4521-4527.

[22]

Sharma A. K., Jha R., Gupta B. D.. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors Journal, 2007, 7(8): 1118-1129.

[23]

Sharma A. K., Gupta B. D.. On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. Journal Applied Physics, 2007, 101(9): 0931111-0931116.

[24]

Slavik R., Homola J., Ctyroky J.. Miniaturization of fiber optic surface plasmon resonance sensor. Sensors and Actuators B: Chemical, 2008, 51(1–3): 311-315.

[25]

Gupta B. D., Singh C. D.. Evanescentabsorption coefficient for diffuse source illumination: uniform-and tapered-fiber sensors. Applied Optics, 1994, 33(13): 2737-2742.

[26]

Grunewald B., Holst G.. Fiber optic refractive index microsensor based on white-light SPR excitation. Sensors and Actuators A: Physical, 2004, 113(2): 174-180.

[27]

Kim Y. C., Peng W., Banerji S., Booksh K. S.. Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases. Optics Letter, 2005, 30(17): 2218-2220.

[28]

Niggemann M., Katerkamp A., Pellmann M., Bolsmann P., Reinbold J., Cam-mann K.. Remote sensing of tetrachloroethene with a micro-fibre optical gassensor based on surface plasmon resonance spectroscopy. Sensors and Actuators B: Chemical, 1996, 34(1–3): 328-333.

[29]

Obando L. A., Booksh K. S.. Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors. Analytical Chemistry, 1999, 71(22): 5116-5122.

[30]

Yinquan Y., Die H., Li H., Min L.. Theoretical investigations for surface plasmon resonance based optical fiber tip sensor. Sensors and Actuators B: Chemical, 2013, 188(11): 757-760.

[31]

Born M., Wolf E.. Principles of optics, 1999

[32]

Winsemius P., Van Kampen F. F., Lengkeek H. P., Van Went C. G.. Temperature dependence of the optical properties of Au, Ag and Cu. Surface and Coatings Technology, 2001, 6(8): 1220-1224.

[33]

DeVore J. R.. Refractive index of rutile and sphalerite. Journal of the Optical Society of America, 1951, 41(6): 416-419.

[34]

Palik E. D.. Handbook of optical constants of solids, 1995

[35]

Malitson I. H.. Interspecimen comparison of the refractive index of fused silica. Journal of the Optical Society of America, 1965, 55(10): 1205-1208.

[36]

Moayyed H., Leite Teixeira I., Coelho L., Santos J. L., Viegas D.. Analysis of phase interrogated SPR fiber optic sensors with bimetallic layers. IEEE Sensors Journal, 2014, 14(10): 3662-3668.

[37]

Priya B., Gupta B. D.. Surface-plasmonresonance-based fiber-optic refractive index sensor: sensitivity enhancement. Applied Optics, 2011, 50(14): 2032-2036.

[38]

Culshaw B.. Interferometric optical fibre sensors. IETE Journal of Research, 1986, 32(4): 311-318.

[39]

Misas C. J., Moita Araujo F. M., Ferreira L. A., Santos J. L., López-Higuera J. M.. Interrogation of low-finesse Fabry-Pérot cavities based on modulation of the transfer function of a wavelength division multiplexer. Journal Lightwave Technology, 2001, 19(5): 673-681.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/