A fiber optic temperature sensor based on the combination of epoxy and glass particles with different thermo-optic coefficients

Wolfgang Wildner , Dietmar Drummer

Photonic Sensors ›› 2015, Vol. 6 ›› Issue (4) : 295 -302.

PDF
Photonic Sensors ›› 2015, Vol. 6 ›› Issue (4) : 295 -302. DOI: 10.1007/s13320-016-0328-6
Regular

A fiber optic temperature sensor based on the combination of epoxy and glass particles with different thermo-optic coefficients

Author information +
History +
PDF

Abstract

This paper describes the development and function of an optical fiber temperature sensor made out of a compound of epoxy and optical glass particles. Because of the different thermo-optic coefficients of these materials, this compound exhibits a strong wavelength and temperature dependent optical transmission, and it therefore can be employed for fiber optic temperature measurements. The temperature at the sensor, which is integrated into a polymer optical fiber (POF), is evaluated by the ratio of the transmitted intensity of two different light-emitting diodes (LED) with a wavelength of 460 nm and 650 nm. The material characterization and influences of different sensor lengths and two particle sizes on the measurement result are discussed. The temperature dependency of the transmission increases with smaller particles and with increasing sensor length. With glass particles with a diameter of 43 μm and a sensor length of 9.8 mm, the intensity ratio of the two LEDs decreases by 60% within a temperature change from 10°C to 40°C.

Keywords

Temperature sensors / fiber optic sensors / epoxy / glass particles / thermo-optic coefficient

Cite this article

Download citation ▾
Wolfgang Wildner, Dietmar Drummer. A fiber optic temperature sensor based on the combination of epoxy and glass particles with different thermo-optic coefficients. Photonic Sensors, 2015, 6(4): 295-302 DOI:10.1007/s13320-016-0328-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee B.. Review of the present status of optical fiber sensors. Optical Fiber Technology, 2003, 9(2): 57-79.

[2]

Busurin V. I., Semenov A. S., Udalov N. P.. Optical and fiber-optic sensors (review). Soviet Journal of Quantum Electronics, 1985, 15(5): 595-621.

[3]

Grattan K. T. V., Sun T.. Fiber optic sensor technology: an overview. Sensors and Actuators, A: Physical, 2000, 82(1): 40-61.

[4]

Kersey A. D.. A review of recent developments in fiber optic sensor technology. Optical Fiber Technology, 1996, 2(3): 291-317.

[5]

Renschen C.. Fi(e)be-thermometer, Prinzipien und Anwendungen der faseroptischen Temperaturemessung. Laser+Photonik, 2004, 3(4): 38-40.

[6]

Kyuma K., Tai S., Sawada T., Nunoshita M.. Fiber-optic instrument for temperature measurement. IEEE Journal of Quantum Electronics, 1982, 18(4): 676-679.

[7]

Rao Y. J.. In-fiber Bragg grating sensors. Measurement Science and Technology, 1997, 8(4): 355-375.

[8]

Kersey A. D., Davis M. A., Patrick H. J., LeBlanc M., Koo K. P., Askins C. G., . Fiber grating sensors. Journal of Lightwave Technology, 1997, 15(8): 1442-1462.

[9]

Mandal J., Pal S., Sun T., Grattan K. T. V., Augousti A. T., Wade S. A.. Bragg grating-based fiber-optic laser probe for temperature sensing. IEEE Photonics Technology Letters, 2004, 16(1): 218-220.

[10]

Maurice E., Monnom G., Dussardier B., Saissy A., Ostrowsky D. B., Baxter G. W.. Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors. Applied Optics, 1995, 34(34): 8019-8025.

[11]

Samiec D.. Verteilte faseroptische Temperatur- und Dehnungsmessung mit sehr hoher Ortsauflösung. Photonik, 2011, 43(6): 34-37.

[12]

Tsai W. H., Lin C. J.. A novel structure for the intrinsic Fabry-Perot fiber-optic temperature sensor. Journal of Lightwave Technology, 2001, 19(5): 682-686.

[13]

Wu C., Fu H. Y., Qureshi K. K., Guan B. O., Tam H. Y.. High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber. Optics Letters, 2011, 36(3): 412-414.

[14]

Wang Y., Li Y., Liao C., Wang D. N., Yang M., Lu P.. High-temperature sensing using miniaturized fiber in-line Mach-Zehnder interferometer. IEEE Photonics Technology Letters, 2010, 22(1): 39-41.

[15]

Culverhouse D., Farahi F., Pannell C. N., Jackson D. A.. Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors. Electronics Letters, 1989, 25(14): 913-915.

[16]

Bao X., Chen L.. Recent progress in Brillouin scattering based fiber sensors. Sensors, 2011, 11(4): 4152-4187.

[17]

Peters K.. Polymer optical fiber sensors–a review. Smart Materials and Structures, 2011, 20(1): 13002-17.

[18]

Habel W. R., Krebber K.. Fiber-optic sensor applications in civil and geotechnical engineering. Photonic Sensors, 2011, 1(3): 268-280.

[19]

Agarwal B. D., Broutman L. J., Chandrashekhara K.. Analysis and performance of fiber composites, 2006, New York: Wiley

[20]

Yung K. C., Zhu B. L., Yue T. M., Xie C. S.. Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites. Composites Science and Technology, 2009, 69(2): 260-264.

[21]

Chandra A., Meyer W. H., Best A., Hanewald A., Wegner G.. Modifying thermal expansion of polymer composites by blending with a negative thermal expansion material. Macromolecular Materials and Engineering, 2007, 292(3): 295-301.

[22]

Tang H. Q., Tang Z. F., Zhao T. T., Li W. L., Ye Q.. Preparation and optical properties of polysiloxane microspheres/PMMA light scattering materials. Guangzi Xuebao/Acta Photonica Sinica, 2012, 41(6): 723-727.

[23]

Zhao Y., Ding P., Ba C., Tang A., Song N., Liu Y.. Preparation of TiO2 coated silicate micro-spheres for enhancing the light diffusion property of polycarbonate composites. Displays, 2014, 35(4): 220-226.

[24]

Wildner W., Drummer D.. Modelling haze and transmission of transparent filled systems in dependence of filler surface area, refractive index difference and wavelength. SPE ANTEC™ Orlando, USA, 2015

[25]

Wildner W., Drummer D.. Wavelength dependent haze of transparent glass-particle filled poly(methyl methacrylate) composites. International Scholarly Research Notice, 2014, 2014, 1-5.

[26]

Breuer H., Grzesitza J.. Trübungserscheinungen in zweiphasigen Polymersystemen (glasfaserverstarkte Polymere). Die Angewandte Makromolekulare Chemie, 1975, 45(681): 1-19.

[27]

Optisches Glas: Datenblätter: Schott AG, 2012.

[28]

Graf J.. Entwicklung und Untersuchungen zur Herstellung verlustarmer passiver Wellenleiter und verstärkender Wellenleiter, 1999, Universität des Saarlandes: Saarbrücken, Germany

[29]

Wildner W., Drummer D.. A fiber optic temperature sensor based on the combination of two materials with different thermo-optic coefficients. IEEE Sensors Journal, 2015, 16(3): 688-692.

[30]

Loos A. C., Springer G. S.. Curing of epoxy matrix composites. Journal of Composite Materials, 1983, 17(2): 135-169.

[31]

Oh J. H., Lee D. G.. Cure cycle for thick glass/epoxy composite laminates. Journal of Composite Materials, 2002, 36(1): 19-45.

[32]

Naganuma T., Kagawa Y.. Effect of total particle surface area on the light transmittance of glass particle-dispersed epoxy matrix optical composites. Journal of Materials Research, 2002, 17(12): 3237-3241.

[33]

Díaz-Herrera N., Navarrete M. C., Esteban O., González-Cano A.. A fiber-optic temperature sensor based on the deposition of a thermochromic material on an adiabatic taper. Measurement Science and Technology, 2004, 15(2): 353-358.

[34]

Bernhard F.. Handbuch der technischen Temperaturmessung, 2014, Berlin Heidelberg: Springer

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/