Study of Rayleigh-backscattering induced coherence collapse in an asymmetric DFB FL sensor

Wen Liu , Lina Ma , Zhengliang Hu , Ying Feng , Huayong Yang

Photonic Sensors ›› 2015, Vol. 6 ›› Issue (3) : 209 -213.

PDF
Photonic Sensors ›› 2015, Vol. 6 ›› Issue (3) : 209 -213. DOI: 10.1007/s13320-016-0326-8
Regular

Study of Rayleigh-backscattering induced coherence collapse in an asymmetric DFB FL sensor

Author information +
History +
PDF

Abstract

Rayleigh-back scattering induced coherence collapse of an asymmetric distributed feedback fiber laser (DFB FL) sensor is investigated using a composite cavity model. The coherence collapse threshold condition of the asymmetric DFB FL sensor is measured. The DFB FL sensor shows different dynamic behaviors in different pump configurations. According to the asymmetric behavior to the external optical feedback, a novel method to find the actual phase shift position of the asymmetric DFB FL sensor is presented.

Keywords

Asymmetric DFB fiber laser sensor / phase shift / coherence collapse / Rayleigh backscattering

Cite this article

Download citation ▾
Wen Liu, Lina Ma, Zhengliang Hu, Ying Feng, Huayong Yang. Study of Rayleigh-backscattering induced coherence collapse in an asymmetric DFB FL sensor. Photonic Sensors, 2015, 6(3): 209-213 DOI:10.1007/s13320-016-0326-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kringlebotn J. T., Archambault J. L., Reekie L., Payne D. N.. Er3+:Yb3+-codoped fiber distributedfeedback laser. Optics Letters, 1994, 19(24): 2101-2103.

[2]

Hill D. J., Nash P. J., Jackson D. A., Webb D. J., O'Neill S. F., Bennion I., . A fiber laser hydrophone array. Proc. SPIE, 1999, 3860, 55-66.

[3]

Hill D. J., Hodder J. D., Freitas S. D., Thomas S. D., Hickey L.. DFB fibre laser sensor developments. Proc. SPIE, 2005, 5855, 904-907.

[4]

Cranch G. A., Flockhart G. M. H., Kirkendall C. K.. Distributed feedback fiber laser strain sensors. IEEE Sensors Journal, 2008, 8(7): 1161-1172.

[5]

Liu Y., Zhang W., Xu T., He J., Zhang F., Li F.. Fiber laser sensing system and its applications. Photonic Sensors, 2011, 1(1): 43-53.

[6]

Rønnekleiv E., Hadeler O., Vienne G.. Stability of an Er-Yb-doped fiber distributed-feedback laser with external reflections. Optics Letters, 1999, 9(24): 617-619.

[7]

Tkach R. W.. Regimes of feedback effects in 1.5µm distributed feedback lasers. Journal of Lightwave Technology, 1986, 4(11): 1655-1661.

[8]

Foster S., Tikhomirov A., Englund M., Inglis H., Edvell G., Milnes M.. A 16 channel fibre laser sensor array. ACOFT/AOS, 2006 40-42.

[9]

Tikhomirov A., Foster S.. DFB FL sensor multiplexing noise. ACOFT/AOS, 2006 60-62.

[10]

Yamada M., Sakuda K.. Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach. Applied Optics, 1987, 26(16): 3474-3478.

[11]

Wang P., Chang J., Zu C., Sun B., Lv G., Zhang S., . A four-element sensor array consisting of asymmetric distributed-feedback fiber lasers. Photonic Sensors, 2014, 4(2): 180-187.

[12]

Qi H. F., Song Z. Q., Li S. J., Guo J., Wang C., Peng G. D.. Apodized distributed feedback fiber laser with asymmetrical outputs for multiplexed sensing applications. Optics Express, 2013, 21(9): 11309-11314.

[13]

Favre F.. Theoretical analysis of external optical feedback on DFB semiconductor lasers. IEEE Journal of Quantum Electronics, 1995, 1(23): 81-88.

[14]

Yelen K., Hickey L. M. B., Zervas M. N.. A new design approach for fiber DFB lasers with improved efficiency. IEEE Journal of Quantum Electronics, 2011, 40(6): 711-720.

[15]

Ma L., Hu Y. M., Luo H., Hu Z. L.. DFB fiber laser hydrophone with flat frequency response and enhanced acoustic pressure sensitivity. IEEE Photonics Technology Letters, 2009, 21(17): 1280-1282.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/