Ultra-compact photonic crystal based water temperature sensor

Mahmoud Nikoufard , Masoud Kazemi Alamouti , Alireza Adel

Photonic Sensors ›› 2015, Vol. 6 ›› Issue (3) : 274 -278.

PDF
Photonic Sensors ›› 2015, Vol. 6 ›› Issue (3) : 274 -278. DOI: 10.1007/s13320-016-0321-0
Regular

Ultra-compact photonic crystal based water temperature sensor

Author information +
History +
PDF

Abstract

We design an ultra-compact water temperature sensor by using the photonic crystal technology on the InP substrate at the 1.55-μm wavelength window. The photonic crystal consists of rods in a hexagonal lattice and a polymethyl methacrylate (PMMA) background. By using the plane wave expansion (PWE) method, the lattice constant and radius of rods are obtained, 520 nm and 80.6 nm, respectively. With a nanocavity placed in the waveguide, a resonance peak is observed at the 1.55-μm wavelength window. Any change of the water temperature inside the nanocavity results in the shift of the resonance wavelength. Our simulations show a shift of about 11 nm for a temperature change of 22.5 ℃. The resonance wavelength has a linear relation with the water temperature.

Keywords

Sensor / water temperature / InGaAsP material / photonic crystal

Cite this article

Download citation ▾
Mahmoud Nikoufard, Masoud Kazemi Alamouti, Alireza Adel. Ultra-compact photonic crystal based water temperature sensor. Photonic Sensors, 2015, 6(3): 274-278 DOI:10.1007/s13320-016-0321-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Joannopoulos J. D., Johnson S. G., Winn J. N., Meade R. D.. Photonic crystals: molding the flow of fight. Computing in Science and Engineering, 1995, 3(6): 38-47.

[2]

Olyaee S., Taghipour F.. Design of new square-lattice photonic crystal fibers for optical communication applications. International Journal of Physical Sciences, 2011, 6(18): 4405-4411.

[3]

Olyaee S., Taghipour F.. Ultra-flattened dispersion hexagonal photonic crystal fibre with low confinement loss and large effective area. IET Optoelectronics, 2012, 6(2): 82-87.

[4]

Kang C., Weiss S. M.. Photonic crystal with multiple-hole defect for sensor applications. Optics Express, 2008, 16(22): 18188-18193.

[5]

Hosseini S., Haas M., Plettemeier D., Jamshidi K.. Integrated optical devices for 3D photonic transceivers, 2016

[6]

Stomeo T., Grande M., Qualtieri A., Passaseo A., Salhi A., De Vittorio M., . Fabrication of force sensors based on two-dimensional photonic crystal technology. Microelectronic Engineering, 2007, 84(5–8): 1450-1453.

[7]

Waxler R. M., Weir C. E.. Effect of pressure and temperature on the refractive indices of benzene, carbon tetrachloride and water. Biochemical & Biophysical Research Communications, 1973, 51(2): 163-171.

[8]

Tao S., Chen D., Wang J., Qiao J., Duan Y.. A high sensitivity pressure sensor based on two-dimensional photonic crystal. Photonic Sensors, 2016, 6(2): 137-142.

[9]

Wang H., Meng H., Xiong R., Wang Q., Huang B., Zhang X., . Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference. Optics Communications, 2016, 364, 191-194.

[10]

Xu L., Nikoufard M., Leijtens X. J., De Vries T., Smalbrugge E., Nötzel R., . High-performance InP-based photodetector in an amplifier layer stack on semi-insulating substrate. IEEE Photonics Technology Letters, 2015, 20(23): 1941-1943.

[11]

Williams K. A., Bente E. A. J. M., Heiss D., Jiao Y., Lawniczuk K., Leijtens X. J. M., . InP photonic circuits using generic integration [Invited]. Photonics Research, 2015, 3(5): B60-B68.

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/