A high sensitivity pressure sensor based on two-dimensional photonic crystal

Shangbin Tao , Deyuan Chen , Juebin Wang , Jing Qiao , Yali Duan

Photonic Sensors ›› 2015, Vol. 6 ›› Issue (2) : 137 -142.

PDF
Photonic Sensors ›› 2015, Vol. 6 ›› Issue (2) : 137 -142. DOI: 10.1007/s13320-016-0316-x
Article

A high sensitivity pressure sensor based on two-dimensional photonic crystal

Author information +
History +
PDF

Abstract

In this paper, we propose and simulate a pressure sensor based on two-dimensional photonic crystal with the high quality factor and sensitivity. The sensor is formed by the coupling of two photonic crystal based waveguides and one nanocavity. The photonic crystal with the triangular lattice is composed of GaAs rods. The detailed structures of the waveguides and nanocavity are optimized to achieve better quality factor and sensitivity of the sensor. For the optimized structures, the resonant wavelength of the sensor has a linear redshift as increasing the applied pressure in the range of 0–2 GPa, and the quality factor keeps unchanged nearly. The optimized quality factor is around 1500, and the sensitivity is up to 13.9 nm/GPa.

Keywords

Photonic crystal / waveguide / nanocavity / pressure sensor

Cite this article

Download citation ▾
Shangbin Tao, Deyuan Chen, Juebin Wang, Jing Qiao, Yali Duan. A high sensitivity pressure sensor based on two-dimensional photonic crystal. Photonic Sensors, 2015, 6(2): 137-142 DOI:10.1007/s13320-016-0316-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yablonovitch E.. Inhibited spontaneous emission in solid-state physics and electronics. Physics Review Letters, 1987, 58(20): 2059-2062.

[2]

Joannopoulos J. D., Meade R. D., Winn J. N.. Photonic crystal: modling of flow of light, 1995, Princeton, NJ: Princeton University Press

[3]

Mekis A., Chen J. C., Kurland I., Fan S., Villeneuve P. R., Joannopoulos J. D.. High transmission through sharp bends in photonic crystal waveguides. Physical Review Letters, 1996, 77(18): 3787-3790.

[4]

Tokushima M., Kosaka H., Tomita A., Yamada H.. Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide. Applied Physics Letters, 2000, 76(8): 952-954.

[5]

Lavrinenko A., Borel P., Frandsen L., Thorhauge M., Harpth A., Kristensen M., . Comprehensive FDTD modelling of photonic crystal waveguide components. Optics Express, 2004, 12(2): 234-248.

[6]

Susumu N., Alongkarn C., Masahiro I.. Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature, 2000, 407(6804): 608-610.

[7]

Akahane Y., Asano T., Song B., Susumu N.. High-Q photonic nanocavity in a two-dimensional photonic crysal. Nature, 2003, 425(6961): 944-947.

[8]

Srinivasan K., Barclay P., Painter O., Chen J., Cho A. Y., Gmach C.. Experimental demonstration of a high quality factor photonic crystal microcavity. Applied Physics Letters, 2003, 83(10): 1915-1917.

[9]

Loncar M., Yoshie T., Scherer A., Gogna P., Qiu Y.. Low-threshold photonic crystal laser. Applied Physics Letters, 2002, 81(15): 2680-2682.

[10]

Park H. G., Kim S. H., Kwon S. H., Ju Y., Yang J., Baek J., . Electrically driven single-cell photonic crystal laser. Science, 2004, 305(5689): 1444-1447.

[11]

Painter O., Husain A., Scherer A., Lee P. T., Kim I., O'Brien J.. D.., . Lithographic tuning of a two-dimensional photonic crystal laser array. IEEE Photonics Technology Letters, 2000, 12(9): 1126-1128.

[12]

Inoue K., Sasada M., Kawamata J., Sakoda K., Haus J. W.. A two-dimensional photonic crystal laser. Applied Physics Letters, 1999, 38(2B): 157-159.

[13]

Mec N., Kuzel P., Duvillaret L., Pashkin A., Dressel M., Sebastian M. T.. Highly tunable photonic crystal filter for the terahertz range. Optics Letters, 2005, 30(5): 549-551.

[14]

Li W., Fu Y., Zhang Q., Shi D. F.. Filtering performance comparision of two types of photonic crystal filter. Laser & Infrared, 2010, 40(7): 762-765.

[15]

Kanamori Y., Matsuyama N., Hane K.. Resonant wavelength tuning of a pitch-variable 1-D photonic crystal filter at telecom frequencies. IEEE Photonics Technology Letters, 2008, 20(13): 1136-1138.

[16]

Knight J. C., Birks T. A., Russell P. S., Atkin D. M.. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21(19): 1547-1549.

[17]

Cregan R. F., Mangan B. J., Knight J. C.. Single-mode photonic band gap guidance of light in air. Science, 1999, 285(5433): 1537-1539.

[18]

Kunimasa S., Yuichiro S., Masanori K.. Coupling characteristics of dual-core photonic crystal fiber couplers. Optics Express, 2003, 11(24): 3188-3195.

[19]

Russell P.. Photonic crystal fibers. Journal of Lightwave Technology, 2007, 24(12): 4729-4749.

[20]

Yang D., Tian H., Ji Y.. The study of electro-optical sensor based on slotted photonic crystal waveguide. Optics Communications, 2011, 284(20): 4986-4990.

[21]

Xu Z., Cao L., Gu C., He Q., Jin G.. Micro displacement sensor based on line-defect resonant cavity in photonic crystal. Optics Express, 2006, 14(1): 298-305.

[22]

Shanthi K. V., Robinson S.. Two-dimensional photonic crystal based sensor for pressure sensing. Photonic Sensors, 2014, 3(3): 248-253.

[23]

Huang M.. Stress effects on the performance of optical waveguides. Solids & Structures, 2003, 40(7): 1615-1632.

[24]

Olyaee S., Dehghani A. A.. High resolution and wide dynamic range pressure sensor based on two-dimensional photonic crystal. Photonic Sensors, 2012, 2(1): 92-96.

[25]

optical waveguides,” Solids & Structures, 2003, 40(7): 1615–1632.

[26]

Olyaee S., Dehghani A. A.. High resolution and wide dynamic range pressure sensor based on two-dimensional photonic crystal. Photonic Sensors, 2012, 2(1): 92-96.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/