Novelty design in gain flattening filter of ASE source based on fat ultra-long period fiber grating

Fereshteh Mohammadi Nafchi , Sharifeh Shahi , Mohammad Taha Shaffaatifar , Mohammad Kanani , Hossein Noormohammadi

Photonic Sensors ›› 2015, Vol. 6 ›› Issue (3) : 243 -248.

PDF
Photonic Sensors ›› 2015, Vol. 6 ›› Issue (3) : 243 -248. DOI: 10.1007/s13320-016-0314-z
Regular

Novelty design in gain flattening filter of ASE source based on fat ultra-long period fiber grating

Author information +
History +
PDF

Abstract

A new type of gain flattening filter for amplified spontaneous emission (ASE) source based on erbium doped fiber (EDF) is proposed and demonstrated by fabricating and writing two series ultra-long period fiber grating (ULPFG) on single mode fiber (SMF-28). The novelty method in this research is based on writing the two ULPFGs as fat gratings. The LPG is written by a simple and available arc-discharge method. The pump power based on single-pass backward pump configuration is around 100 mW, and the average wavelength is near to 974 nm. The gain flattening profile is obtained by 3.4 (±1.7) dB ripple in the wavelength range between 1524 nm and 1565 nm with 41-nm band width.

Keywords

Amplified spontaneous emission (ASE) source / erbium-doped fiber amplifier (EDFA) / gain flattening filter / long-period fiber grating (LPFG)

Cite this article

Download citation ▾
Fereshteh Mohammadi Nafchi, Sharifeh Shahi, Mohammad Taha Shaffaatifar, Mohammad Kanani, Hossein Noormohammadi. Novelty design in gain flattening filter of ASE source based on fat ultra-long period fiber grating. Photonic Sensors, 2015, 6(3): 243-248 DOI:10.1007/s13320-016-0314-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Toge K., Ito F.. Recent research and development of optical fiber monitoring in communication systems. Photonic Sensors, 2013, 3(4): 304-313.

[2]

Tiana J., Yaoa Y., Suna Y. X., Xub X. C., Zhaoa X. H., Chen D. Y.. Flat broadband erbium-doped fiber ASE source based on symmetric nonlinear optical loop mirror. Laser Physics, 2010, 20(8): 1760-1766.

[3]

Jazi M. K., Shahi S., Hekmat M. J., Saghafifar H., Khuzani A. T., Khalilian H., . The evaluation of various designs upon C&L band super fluorescent sources based erbium doped fiber. Laser Physics, 2013, 23(6): 553-559.

[4]

Yang J., Meng X., Liu C., Liu C.. Gain-flattened two-stage L-band erbium-doped fiber amplifier by weak gain-clamped technique. Optical Engineering, 2015, 54(3): 0361071-0361075.

[5]

Lin H., Fan W., Han W.. Broad gain of the Er/Al-doped fiber amplifier by pumping with a white light-emitting diode. Journal of Luminescence, 2014, 146(1): 87-90.

[6]

Huri N. A. D., Hamzah A., Arof H., Ahmad H., Harun S. W.. Hybrid flat gain c-band optical amplifier with zr-based erbium-doped fiber and semiconductor optical amplifier. Laser Physics, 2011, 21(1): 202-204.

[7]

Marques C. A. F., Oliveira R. A., Pohl A. A. P., Nogueira R. N.. Adjustable EDFA gain equalization filter based on a single LPG excited by flexural acoustic waves for future DWDM networks. International Conference on Fibre Optics and Photonics, 2012, 180, 3770-3774.

[8]

Pohl A. A. P., Oliveira R. A., Silva R. E. D., Marques C. A. F., Neves P. D. T., Cook K., . Advances and new applications using the acousto-optic effect in optical fibers. Photonic Sensors, 2013, 3(1): 1-25.

[9]

Xue X., Zhang W., Yin L., Wei S., Gao Sh., Geng P., . All-fiber intermodal Mach-Zehnder interferometer based on a long-period fiber grating combined with a fiber bitaper. Optics Communications, 2012, 285, 3935-3938.

[10]

Kumar N., Ramachandran K.. Mach-Zehnder interferometer concatenated fiber loop mirror based gain equalization filter for an EDFA. Optics Communications, 2013, 289(4): 92-96.

[11]

Zhang A. P., Gao S., Yan G., Bai Y.. Advances in optical fiber Bragg grating sensor technologies. Photonic Sensors, 2012, 2(1): 1-13.

[12]

Kalli K., Allsop T., Zhou K., Smith G., Komodromos M., Webb D., . Sensing properties of femtosecond laser-inscribed long period gratings in photonic crystal fiber. Photonic Sensors, 2011, 1(3): 228-233.

[13]

Singh A.. Long period fiber grating based refractive index sensor with enhanced sensitivity using michelson interferometric arrangement. Photonic Sensors, 2015, 5(2): 172-179.

[14]

Huang Q., Yu Y., Ou Z., Chen X., Wang J., Yan P., . Refractive index and strain sensitivities of a long period fiber grating. Photonic Sensors, 2014, 4(1): 92-96.

[15]

Chaves R. C., Pohl A. D. A. P., Abe I., Sebem R., Paterno A.. Strain and temperature characterization of LPGs written by CO2 laser in pure silica LMA photonic crystal fibers. Photonic Sensors, 2015, 5(3): 241-250.

[16]

Xu X., Tang J., Zhao J., Yang K., Fu C., Wang Q., . Post-treatment techniques for enhancing mode-coupling in long period fiber gratings induced by CO2 laser. Photonic Sensors, 2015, 5(4): 339-344.

[17]

Melo M., Marques P. V. S.. Fabrication of tailored Bragg gratings by the phase mask dithering/moving technique. Photonic Sensors, 2013, 3(1): 81-96.

[18]

Ju J., Jin W.. Long period gratings in photonic crystal fibers. Photonic Sensors, 2012, 2(1): 65-70.

[19]

Singh A.. Study of modeling aspects of long period fiber grating using three-layer fiber geometry. Photonic Sensors, 2015, 5(1): 32-42.

[20]

Li Q., Yan F., Liu P., Peng W., Yin G., Feng T.. Analysis of transmission characteristics of tilted long period fiber gratings with full vector complex coupled mode theory. Photonic Sensors, 2012, 2(2): 158-165.

[21]

Bae J. K., Bae J., Kim S. H., Park N., Lee S. B.. Dynamic EDFA gain-flattening filter using two lpfgs with divided coil heaters. IEEE Photonics Technology Letters, 2005, 17(6): 1226-1228.

[22]

Nascimento V., Oliveira J. D., Ribeiro V. B., Borndonalli A. C.. Dynamic EDFA gain spectrum equalizer using temperature controlled optoceramic filter array. IEEE Microwave & Optoelectronics Conference (IMOC), Natal, 2011 273-276.

[23]

Shang R. B., Zhang W. G., Zhu W. B., Geng P. C., Ruan J., Gao S. C., . Fabrication of twisted long period fiber gratings with high frequency CO2 laser pulses and its bend sensing. Journal of Optics, 2013, 15(7): 75402-75407.

[24]

Jin W., Xuan H.. Rocking long period gratings in single mode fibers. IEEE Lightwave Technology, 2013, 31(18): 3117-3122.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/