Variable configuration fiber optic laser doppler vibrometer system

Julio E. Posada-Roman , David A. Jackson , Jose A. Garcia-Souto

Photonic Sensors ›› 2015, Vol. 6 ›› Issue (2) : 97 -106.

PDF
Photonic Sensors ›› 2015, Vol. 6 ›› Issue (2) : 97 -106. DOI: 10.1007/s13320-016-0293-0
Article

Variable configuration fiber optic laser doppler vibrometer system

Author information +
History +
PDF

Abstract

A multichannel heterodyne fiber optic vibrometer is demonstrated which can be operated at ranges in excess of 50 m. The system is designed to measure periodic signals, impacts, rotation, 3D strain, and vibration mapping. The displacement resolution of each channel exceeds 1 nm. The outputs from all channels are simultaneous, and the number of channels can be increased by using optical switches.

Keywords

Laser Doppler / vibration / digital processing / nanometer resolution / multiplexing / optical fiber

Cite this article

Download citation ▾
Julio E. Posada-Roman, David A. Jackson, Jose A. Garcia-Souto. Variable configuration fiber optic laser doppler vibrometer system. Photonic Sensors, 2015, 6(2): 97-106 DOI:10.1007/s13320-016-0293-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lewin A. C., Kersey A. D., Jackson D. A.. Non-contact surface vibration analysis using a monomode fiber optic interferometer incorporating an open air path. Journal of Physics E Scientific Instruments, 1985, 18(7): 604-608.

[2]

Posada J. E., Garcia-Souto J. A., Rubio-Serrano J.. Multichannel optical-fiber heterodyne interferometer for ultrasound detection of partial discharges in power transformers. Measurement Science & Technology, 2013, 24(9): 94015-94023.

[3]

Jackson D. A., Posada-Roman J. E., Garcia-Souto J. A.. Calibration of laser Doppler vibrometer exploiting Bessel functions of the first kind. Electronics Letters, 2015, 51(14): 1100-1102.

[4]

Yang C., Guo M., Liu H., Yan K., Xu Y., Miao H., . A multi-point laser Doppler vibrometer with fiber-based configuration. Review of Scientific Instruments, 2013, 84(12): 121702-1–121702–6.

[5]

Fu Y., Guo M., Phua P. B.. Multipoint laser Doppler vibrometry with single detector: principles, implementations, and signal analyses. Applied Optics, 2011, 50(10): 1280-1288.

[6]

Jackson D. A.. Monomode optical fiber interferometers for precision measurement. Journal of Physics E Scientific Instruments, 1985, 18(12): 981-1001.

[7]

Schulz M., Lehmann P.. Measurement of distance changes using a fibre-coupled common-path interferometer with mechanical path length modulation. Measurement Science & Technology, 2013, 24(24): 48-49.

[8]

Charrett T. O. H., James S. W., Tatam R. P.. Optical fibre laser velocimetry: a review. Measurement Science & Technology, 2012, 23(3): 32001-32032.

[9]

Tan K. M., Mazilu M., Chow T. H., Lee W. M., Taguchi K., Ng B. K., . In-fiber common-path optical coherence tomography using a conical-tip fiber. Optics Express, 2009, 17(4): 2375-2384.

[10]

Connelly M. J.. Digital synthetic-heterodyne interferometric demodulation. Journal of Optics A Pure & Applied Optics, 2002, 4(6): S400-S405.

[11]

Jackson D. A.. High temperature Fabry-Perot probe interrogated with tunable fibre ring laser. Electronics Letters, 2008, 44(15): 898-899.

[12]

Bush J., Cekorich A., Kirkendall C. K.. Multichannel interferometric demodulator. Proc. SPIE, 1997, 3180, 19-29.

[13]

Liu T. Y., Berwick M., Jackson D. A.. Novel fibre-optic torsional vibrometers. Review of Scientific Instruments, 1992, 63(4): 2164-2169.

[14]

Jackson D. A., Cole M. J.. Fiber optic interrogation systems for hypervelocity and low velocity impact studies. Photonic Sensors, 2012, 2(1): 50-59.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/