Time division multiplexing of 106 weak fiber Bragg gratings using a ring cavity configuration

Zhi Wang , Hongqiao Wen , Zhihui Luo , Yutang Dai

Photonic Sensors ›› 2015, Vol. 6 ›› Issue (2) : 132 -136.

PDF
Photonic Sensors ›› 2015, Vol. 6 ›› Issue (2) : 132 -136. DOI: 10.1007/s13320-016-0275-2
Article

Time division multiplexing of 106 weak fiber Bragg gratings using a ring cavity configuration

Author information +
History +
PDF

Abstract

A time division multiplexing of 106 weak fibers Bragg gratings (FBGs) based on a ring resonant-cavity is demonstrated. A semiconductor optical amplifier is connected in the cavity to function as an amplifier as well as a switch. The 106 weak FBGs are written along a SMF-28 fiber in serial with peak reflectivity of about −30 dB and equal separations of 5 m. The crosstalk and spectral distortion are investigated through both theoretical analysis and experiments.

Keywords

Fiber Bragg grating (FBG) / semiconductor optical amplifier (SOA) / time-division multiplexing (TDM)

Cite this article

Download citation ▾
Zhi Wang, Hongqiao Wen, Zhihui Luo, Yutang Dai. Time division multiplexing of 106 weak fiber Bragg gratings using a ring cavity configuration. Photonic Sensors, 2015, 6(2): 132-136 DOI:10.1007/s13320-016-0275-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jin W.. Multiplexed FBG sensors and their applications. Proc. SPIE, 1999, 3897, 468-479.

[2]

Rodrigues C., Félix C., Lage A., Figueiras J.. Development of a long-term monitoring system based on FBG sensors applied to concrete bridges. Engineering Structures, 2010, 32(8): 1993-2002.

[3]

Mieloszyk M., Skarbek L., Krawczuk M., Ostachowicz W., Zak A.. Application of fiber Bragg grating sensors for structural health monitoring of an adaptive wing. Smart Material & Structures, 2011, 20(12): 11516-11543.

[4]

Grattan K. T. V., Sun T.. Fiber optic sensor technology: an overview. Sensors & Actuators A, 2000, 82(s1–3): 40-61.

[5]

Gagliardi G., Salza M., Ferraro P., De Natale P.. Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation. Optics Express, 2005, 13(7): 2377-2384.

[6]

Lloyd G. D., Everall L. A., Sugden K., Bennion I.. Novel resonant cavity TDM demodulation scheme for FBG sensing. Conference on Lasers and Electro-Optics, 2004

[7]

Lloyd G. D., Everall L. A., Sugden K., Bennion I.. Resonant cavity time-division-multiplexed fiber Bragg grating sensor interrogator. IEEE Photonics Technology Letters, 2004, 16(10): 2323-2325.

[8]

Chung W. H., Tam H. Y.. Time- and wavelength-division multiplexing of FBG sensors using a semiconductor optical amplifier in ring cavity configuration. IEEE Photonics Technology Letters, 2005, 17(12): 2709-2711.

[9]

Dai Y. B., Liu Y. J., Leng J. S., Deng G., Asundi A.. A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring. Optics & Lasers in Engineering, 2009, 47(10): 1028-1033.

[10]

Chan C. C., Jin W., Wang D. J., Demokan M. S.. Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser. Microwave and Optical Technology Letters, 2000, 36(1): 2-4.

[11]

Cooper D. J. F., Coroy T., Smith P. W. E.. Time-division multiplexing of large serial fiberoptic Bragg grating sensor arrays. Applied Optics, 2001, 40(16): 2643-2654.

[12]

Guo H. Y., Tang J. G., Li X. F., Zheng Y., Yu H. F.. On-line writing identical and weak fiber Bragg grating arrays. Chinese Optics Letters, 2013, 11(3): 4-7.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/