Micro-opto-mechanical disk for inertia sensing

Ghada H. Dushaq , Tadesse Muluget , Mahmoud Rasras

Photonic Sensors ›› 2015, Vol. 6 ›› Issue (1) : 78 -84.

PDF
Photonic Sensors ›› 2015, Vol. 6 ›› Issue (1) : 78 -84. DOI: 10.1007/s13320-015-0294-4
Regular

Micro-opto-mechanical disk for inertia sensing

Author information +
History +
PDF

Abstract

An optically enabled z-axis micro-disk inertia sensor is presented, which consists of a disk-shaped proof mass integrated on top of an optical waveguide. Numerical simulations show that the optical power of laser beam propagating in a narrow silicon nitride (Si3N4) waveguide located under the disk is attenuated in response to the vertical movement of the micro-disk. The high leakage power of the TM mode can effectively be used to detect a dynamic range of 1 g‒10 g (g=9.8 m/s2). At lest, the waveguide is kept at a nominal gap of 1 µm from the proof mass. It is adiabatically tapered to a narrow dimension of W×H = 350×220 nm2 in a region where the optical mode is intended to interact with the proof mass. Furthermore, the bottom cladding is completely etched away to suspend the waveguide and improve the optical interaction with the proof mass. The proposed optical inertia sensor has a high sensitivity of 3 dB/g when a 50 µm-long waveguide is used (normalized sensitivity 0.5 dB/µm2) for the vertical movement detection.

Keywords

Micro-opto-Mechanical system / photonic inertia sensor / hybrid integration

Cite this article

Download citation ▾
Ghada H. Dushaq, Tadesse Muluget, Mahmoud Rasras. Micro-opto-mechanical disk for inertia sensing. Photonic Sensors, 2015, 6(1): 78-84 DOI:10.1007/s13320-015-0294-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dong B., Cai H., Tsai J. M., Kwong D. L., Liu A. Q.. An on-chip opto-mechanical accelerometer. in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (MEMS), 2013 641-644.

[2]

Zandi K., Belanger J. A., Peter Y. A.. Design and demonstration of an in-plane silicon-on-insulator optical MEMS Fabry-perot-based accelerometer integrated with channel waveguides. Journal of Microelectromechanical Systems, 2012, 21(6): 1464-1470.

[3]

Seidel H., Fritsch U., Gottinger R., Schalk J., Walter J., Ambaum K.. A peiezoresistive silicon accelerometer with monolithically integrated CMOS-circuitry. in the 8th International Conference on Solid-State Sensors and Actuators, 1995 597-600.

[4]

Yeh C., Najafi K.. A low-voltage bulk-silicon tunneling-based microaccelerometer. in International Electron Devices Meeting, 1995 593-596.

[5]

Leung A. M., Jones J., Czyzewska E., Chen J., Woods B.. Micromachened accelerometer based on convection heat transfer. in Proceeding of IEEE Micro Electro Mechanical Systems Workshop (MEMS’98), 1998 627-630.

[6]

Sun C., Wang C., Fang W.. On the sensitivity improvement of CMOS capacitive accelerometer. Sensors & Actuators A Physical, 2008, 14(12): 347-352.

[7]

Hutchison D. N., Bhave S. A.. Z-axis optomechanical accelerometer. in Proceeding of IEEE Conference on Micro Electro Mechanical Systems (MEMS), 2012 615-619.

[8]

Yazdi N., Ayazi F., Najafi K.. Micromachined inertia sensors. Proceeding of the IEEE, 1998, 86(8): 1640-1659.

[9]

Boser B. E., Howe R. T.. Surface micromachined accelerometer. IEEE Journal of Solid-State Circuits, 1996, 31(3): 366-375.

[10]

Bauters J. F., Heck M. J. R., John D., Dai D., Tien M. C., Barton J. S., . Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Optics Express, 2011, 19(4): 3163-3167.

[11]

Aksyuk V. A., Simon M. E., Pardo F., Arney S., Lopez D., Villanueva A.. A 2002 Optical MEMS design for telecommunications applications Solid-State Sensor, Actuator and Microsystem Workshop, 2002

[12]

Barillaro G., Molfese A., Nannini A., Pieri F.. Analysis, simulation and relative performances of two kinds of serpentine spring. Journal of Micromechanics & Microengineering, 2005, 15(4): 736-746.

[13]

Landau L. D., Pitaevskii L. P., Kosevich A. M., Lifshitz E. M.. Theory of elasticity, 1959, Massachusetts: Addison-Wesley, Inc. Reading

[14]

Fedder G. K.. Simulation of microelectromechanical systems. Ph.D. dissertation, 1994

[15]

Younis M. I.. MEMS linear and nonlinear statics and dynamics, 2011, Berlin: Springer

[16]

Thomoson W. T., Dahleh M. D.. Theory of vibration with applications, 1998, New Jersey: Prentice Hall

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/