High sensitivity gas sensor based on IR spectroscopy technology and application

Hengyi Li

Photonic Sensors ›› 2015, Vol. 6 ›› Issue (2) : 127 -131.

PDF
Photonic Sensors ›› 2015, Vol. 6 ›› Issue (2) : 127 -131. DOI: 10.1007/s13320-015-0290-8
Article

High sensitivity gas sensor based on IR spectroscopy technology and application

Author information +
History +
PDF

Abstract

Due to extremely effective advantages of the quantum cascade laser spectroscopy and technology for trace gas detection, this paper presents spectroscopy scanning, the characteristics of temperature tuning, system resolution, sensitivity, and system stability with the application of the presented gas sensor. Experimental results showed that the sensor resolution was ≤0.01cm−1 (equivalent to 0.06 nm), and the sensor sensitivity was at the level of 194 ppb with the application of H2CO measurement.

Keywords

Quantum cascade laser / IR spectroscopy / high sensitivity / formaldehyde

Cite this article

Download citation ▾
Hengyi Li. High sensitivity gas sensor based on IR spectroscopy technology and application. Photonic Sensors, 2015, 6(2): 127-131 DOI:10.1007/s13320-015-0290-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Faist J., Capasso F., Sivco D. L., Sirtori C., Hutchinson A. L., Cho A. Y.. Quantum cascade laser. Science, 1994, 264(158): 553-556.

[2]

Wang L., Sharples T. R.. Intrapulse quantum cascade laser spectroscopy: pressure induced line broadening and shifting in the–6 band of formaldehyde. Applied Physics B, 2012, 108(2): 427-435.

[3]

Steck T., Glatthor N., Clarmann T. v, Fischer H., Flaud J. M., Funke B.. Retrieval of global upper tropospheric and stratospheric formaldehyde (H2CO) distributions from high-resolution MIPAS-envisat spectra. Atmospheric Chemistry & Physics, 2008, 8(3): 463-470.

[4]

Chen X., Cheng L., Guo D., Kostov Y., Choa F. S.. Quantum cascade laser based standoff photoacoustic chemical detection. Optics Express, 2011, 9(21): 20251-20257.

[5]

Wang L., Thomas-Reoben S.. Monitoring hydrogen sulfide using a quantum cascade laser based trace gas sensing system. Chinese Physics Letters, 2011, 28(6): 1183-1187.

[6]

Wisthaler A., Apel E. C., Bossmeyer J., Hansel A., Junkermann W., Koppmann R.. Technical note: intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry & Physics Discussions, 2008, 7(6): 15619-15650.

[7]

Chance K., Orphal J.. Revised ultraviolet absorption cross sections of H2CO for the HITRAN database. Journal of Quantitative Spectroscopy & Radiative Transfer, 2011, 12(9): 1509-1510.

[8]

Burling I. R., Yolelson R. J., Akagi S. K., Urbanski S. P., Wold C. E., Griffith D. W. T., . Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States. Atmospheric Chemistry & Physics, 2011, 11(23): 12197-12216.

[9]

Heald C. L., Goldstein A. H., Allan J. D., Aiken A. C.. Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations. Atmospheric Chemistry & Physics, 2008, 8(7): 2007-2025.

[10]

Wang L.. Formaldehyde and methane spectroscopy measurements based on mid-IR quantum cascade laser system. Journal of Infrared and Millimeter Waves, 2014, 33(6): 591-597.

[11]

Duxbury G., Langford N., McCulloch M. T., Stephen W.. Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics. Chemical Society Reviews, 2005, 34(11): 921-934.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/