Self-compensating displacement sensor based on hydramatic structured transducer and fiber Bragg grating

Shimeng Chen , Yun Liu , Xiuxin Liu , Yang Zhang , Wei Peng

Photonic Sensors ›› 2014, Vol. 5 ›› Issue (4) : 351 -356.

PDF
Photonic Sensors ›› 2014, Vol. 5 ›› Issue (4) : 351 -356. DOI: 10.1007/s13320-015-0278-4
Regular

Self-compensating displacement sensor based on hydramatic structured transducer and fiber Bragg grating

Author information +
History +
PDF

Abstract

An optical fiber displacement sensor with a large measuring range for simultaneous displacement and temperature measurement is presented in this paper. We developed a specific transducer based on the piston and hydraumatic structure to realize a large displacement measurement, which combined the large measuring range and high precision into a single sensor system. The spectrum showed two reflection peaks used to compensate for cross-sensitivity in the displacement detection. This displacement sensor can linearly work in a large measuring displacement range greater than 45 mm with a high sensitivity of 0.036 nm/mm. The sensor we reported can be developed for real-time displacement monitoring in many industrial environments such as the mechanical shape or liquid level monitoring.

Keywords

Hydraumatic structured transducer / large measuring range / temperature compensating / optical fiber sensor / displacement

Cite this article

Download citation ▾
Shimeng Chen, Yun Liu, Xiuxin Liu, Yang Zhang, Wei Peng. Self-compensating displacement sensor based on hydramatic structured transducer and fiber Bragg grating. Photonic Sensors, 2014, 5(4): 351-356 DOI:10.1007/s13320-015-0278-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee C. E., Taylor H. F.. Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source. Journal of Lightwave Technology, 1991, 9(1): 129-134.

[2]

Guan B. O., Tam H. Y., Ho S. L., Chung W. H., Dong X. Y.. Simultaneous strain and temperature measurement using a single fibre Bragg grating. Electronics Letters, 2000, 36(12): 1018-1019.

[3]

Singh A.. Long period fiber grating based refractive index sensor with enhanced sensitivity using michelson interferometric arrangement. Photonic Sensors, 2015, 5(2): 172-179.

[4]

Guo T., Zhang H., Liu B., Li G., Zhao Q., Dong X.. Gaussian-strain-chirped fiber Bragg grating couple for temperature-insensitive and intensity-referenced force measurement. IEEE Sensors Journal, 2007, 7(10): 1390-1394.

[5]

Li H., Sheng D., Bing S.. Recent applications of fiber optic sensors to health monitoring in civil engineering. Engineering Structures, 2004, 26(11): 1647-1657.

[6]

Habel W. R., Krebber K.. Fiber-optic sensor applications in civil and geotechnical engineering. Photonic Sensors, 2011, 1(3): 268-280.

[7]

Wang T. Y., Zheng S. X., Yang Z. G.. A high precision displacement sensor using a low-finesse fiber-optic Fabry-Pérot interferometer. Sensors and Actuators A: Physical, 1998, 69(2): 134-138.

[8]

Ruan F., Zhou Y., Lam Y. L., Mei S. H., Liaw C. Y., Liu J.. A precision fiber optic displacement sensor based on reciprocal interferometry. Optics Communications, 2000, 176(1): 105-112.

[9]

Mehta A., Mohammed W., Johnson E. G.. Multimode interference-based fiber-optic displacement sensor. IEEE Photonics Technology Letters, 2003, 15(8): 1129-1131.

[10]

Buchade P. B., Shaligram A. D.. Simulation and experimental studies of inclined two fiber displacement sensor. Sensors and Actuators A: Physical, 2006, 128(2): 312-316.

[11]

Cao H. M., Chen Y. P., Zhou Z. D., Zhang G.. Theoretical and experimental study on the optical fiber bundle displacement sensors. Sensors and Actuators A: Physical, 2007, 136(2): 580-587.

[12]

Dong X., Yang X., Zhao C., Ding L., Shum P., Ngo N. Q.. A novel temperature-insensitive fiber Bragg grating sensor for displacement measurement. Smart Materials and Structures, 2005, 14(2): 7-10.

[13]

Zhang W. G., Dong X. Y., Zhao Q. D., Kai G. Y., Yuan S. Z.. FBG-type sensor for simultaneous measurement of force (or displacement) and temperature based on bilateral cantilever beam. IEEE Photonics Technology Letters, 2001, 13(12): 1340-1342.

[14]

Zhao Y., Zhao H., Zhang X., Meng Q., Yuan B.. A novel double-arched-beam-based fiber Bragg grating sensor for displacement measurement. IEEE Photonics Technology Letters, 2008, 20(15): 1296-1298.

[15]

Guan B. O., Tam H. Y., Ho S. L., Chung W. H., Dong X. Y.. Simultaneous strain and temperature measurement using a single fibre Bragg grating. Electronics Letters, 2000, 36(12): 1018-1019.

[16]

Shen W., Wu X., Meng H., Zhang G., Huang X.. Long distance fiber-optic displacement sensor based on fiber collimator. Review of Scientific Instruments, 2010, 81(12): 12310.

[17]

Chen J., Zhou J., Jia Z.. High-sensitivity displacement sensor based on a bent fiber Mach-Zehnder interferometer. IEEE Photonics Technology Letters, 2013, 25(23): 2354-2357.

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/