Post-treatment techniques for enhancing mode-coupling in long period fiber gratings induced by CO2 laser

Xizhen Xu , Jian Tang , Jing Zhao , Kaiming Yang , Cailing Fu , Qiao Wang , Shen Liu , Changrui Liao , Jiarong Lian , Yiping Wang

Photonic Sensors ›› 2014, Vol. 5 ›› Issue (4) : 339 -344.

PDF
Photonic Sensors ›› 2014, Vol. 5 ›› Issue (4) : 339 -344. DOI: 10.1007/s13320-015-0277-5
Regular

Post-treatment techniques for enhancing mode-coupling in long period fiber gratings induced by CO2 laser

Author information +
History +
PDF

Abstract

Two promising post-treatment techniques, i.e. applying tensile strain and rising temperature, are demonstrated to enhance the mode-coupling efficiency of the CO2-laser-induced long period fiber gratings (LPFGs) with periodic grooves. Such two post-treatment techniques can be used to enhance the resonant attenuation of the grating to achieve a LPFG-based filter with an extremely large attenuation and to tailor the transmission spectrum of the CO2-laser-induced LPFG after grating fabrication.

Keywords

Long period fiber gratings / fiber Bragg gratings / optical fiber sensor / temperature / tensile strain / optical fiber device

Cite this article

Download citation ▾
Xizhen Xu, Jian Tang, Jing Zhao, Kaiming Yang, Cailing Fu, Qiao Wang, Shen Liu, Changrui Liao, Jiarong Lian, Yiping Wang. Post-treatment techniques for enhancing mode-coupling in long period fiber gratings induced by CO2 laser. Photonic Sensors, 2014, 5(4): 339-344 DOI:10.1007/s13320-015-0277-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Davis D. D., Gaylord T. K., Glytsis E. N., Kosinski S. G., Mettler S. C., Vengsarkar A. M.. Long-period fibre grating fabrication with focused CO2 laser pulses. Electronics Letters, 1998, 34(3): 302-303.

[2]

Rao Y., Wang Y., Ran Z., Zhu T.. Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses. Journal of Lightwave Technology, 2003, 21(5): 1320-1327.

[3]

Wang Y., Rao Y.. Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously. Electronics Letters, 2004, 40(3): 164-166.

[4]

Wang Y., Xiao L., Wang D., Jin W.. Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity. Optics Letters, 2006, 31(23): 3414-3416.

[5]

Wang Y., Xiao L., Wang D., Jin W.. In-fiber polarizer based on a long-period fiber grating written on photonic crystal fiber. Optics Letters, 2007, 32(9): 1035-1037.

[6]

Wang Y., Jin W., Ju J., Xuan H., Ho H. L., Xiao L., . Long period gratings in air-core photonic bandgap fibers. Optics Express, 2008, 16(4): 2784-2790.

[7]

Drozin L., Fonjallaz P. Y., Stensland L.. Long-period fibre gratings written by CO2 exposure of H2-loaded, standard fibres. Electronics Letters, 2000, 36(8): 742-744.

[8]

Liu Y., Chiang K. S.. CO2 laser writing of long-period fiber gratings in optical fibers under tension. Optics Letters, 2008, 33(17): 1933-1935.

[9]

Lee H. W., Chiang K. S.. CO2 laser writing of long-period fiber grating in photonic crystal fiber under tension. Optics Express, 2009, 17(6): 4533-4539.

[10]

Chaves R. C., d A., Pohl A. P., Abe I., Sebem R., Paterno A.. Strain and temperature characterization of LPGs written by CO2 laser in pure silica LMA photonic crystal fibers. Photonic Sensors, 2015, 5(3): 241-250.

[11]

Vengsarkar A. M., Lemaire P. J., Judkins J. B., Bhatia V., Erdogan T., Sipe J. E.. Long-period fiber gratings as band-rejection filters. Journal of Lightwave Technology, 1996, 14(1): 58-65.

[12]

Singh A.. Long period fiber grating based refractive index sensor with enhanced sensitivity using Michelson interferometric arrangement. Photonic Sensors, 2014, 5(2): 172-179.

[13]

Y. Wang, D. N. Wang, W. Jin, Y. Rao, and G. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Applied Physics Letters, 2006, 89(n15): 151105-1–151105-3.

[14]

Vaziri M., Chen C. L.. Optical-fiber strain sensors with asymmetric etched structures. Applied Optics, 1993, 32(31): 6399-6406.

[15]

Wang Y., Chen J., Rao Y.. Torsion characteristics of long-period fiber gratings induced by high-frequency CO2 laser pulses. Journal of the Optical Society of America B, 2005, 22(6): 1167-1172.

[16]

Savin S., Digonnet M. J. F., Kino G. S., Shaw H. J.. Tunable mechanically induced long-period fiber gratings. Optics Letters, 2000, 25(10): 710-712.

[17]

Su L., Chiang K. S., Lu C.. Microbend-induced mode coupling in a graded-index multimode fiber. Applied Optics, 2005, 44(34): 7394-7402.

[18]

Sakata H., Iwazaki T.. Sensitivity-variable fiber optic pressure sensors using microbend fiber gratings. Optics Communications, 2009, 282(23): 4532-4536.

[19]

Wang Y., Wang D. N., Jin W.. CO2 laser-grooved long period fiber grating temperature sensor system based on intensity modulation. Applied Optics, 2006, 45(31): 7966-7970.

[20]

Wang Y., Tan X., Jin W., Ying D., Hoo Y. L., Liu S.. Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications. Optics Letters, 2010, 35(1): 88-90.

[21]

Kulishov M., Azana J.. Long-period fiber gratings as ultrafast optical differentiators. Optics Letters, 2005, 30(20): 2700-2702.

[22]

Dubov M., Bennion I., Slattery S. A., Nikogosyan D. N.. Strong long-period fiber gratings recorded at 352 nm. Optics Letters, 2005, 30(19): 2533-2535.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/