Flat frequency comb generation based on efficiently multiple four-wave mixing without polarization control

Qimeng Dong , Bao Sun , Fushen Chen , Jun Jiang

Photonic Sensors ›› 2015, Vol. 6 ›› Issue (1) : 85 -89.

PDF
Photonic Sensors ›› 2015, Vol. 6 ›› Issue (1) : 85 -89. DOI: 10.1007/s13320-015-0273-9
Regular

Flat frequency comb generation based on efficiently multiple four-wave mixing without polarization control

Author information +
History +
PDF

Abstract

This paper presents a new technique for flat optical frequency comb (OFC) generation, which is based on the nonlinear process of multiple four-wave mixing (FWM) effects. The nonlinear effects are significantly enhanced by using the proposed optical feedback scheme consisting of a single mode fiber (SMF), two highly nonlinear fibers (HNLFs) with different zero dispersion wavelengths (ZDWs) and polarization beam splitters (PBSs). Simulation results illustrate its efficiency and applicability of expanding a comb to 128 coherent lines spaced by only 20 GHz within 6-dB power deviation.

Keywords

Nonlinear fiber optics / multiple four-wave mixing / optical feedback / phase modulation / self-phase modulation

Cite this article

Download citation ▾
Qimeng Dong, Bao Sun, Fushen Chen, Jun Jiang. Flat frequency comb generation based on efficiently multiple four-wave mixing without polarization control. Photonic Sensors, 2015, 6(1): 85-89 DOI:10.1007/s13320-015-0273-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Udem T., Holzwarth R., Hänsch T. W.. Optical frequency metrology. Nature, 2002 233-237.

[2]

Cruz F. C.. Optical frequency combs generated by four-wave mixing in optical fibers for astrophysical spectrometer calibration and metrology. Optics Express, 2008, 16(17): 13267-13275.

[3]

Macfarlane G. M., Bell A. S., Riis E., Ferguson A. I.. Optical comb generator as an efficient short-pulse source. Optics Letters, 1996, 21(7): 534-536.

[4]

Ohara T., Takara H., Yamamoto Y., Masuda H., Morioka T., Abe M., . Over-1000-channel ultra-dense WDM transmission with multicarrier source. Journal of Lightwave Technology, 2006, 24(6): 2311-2317.

[5]

Fok M. P., Shu C.. Multi-pump four-wave mixing in a photonic crystal fiber for 6×10 Gb/s wavelength multicasting of DPSK signals. IEEE Photonics Technology Letters, 2007, 19(15): 1166-1168.

[6]

Li Z., Chi H., Zhang X., Zheng S., Jin X., Yao J.. A reconfigurable photonic microwave channelized receiver based on an optical comb. in 2011 International Topical Meeting on Microwave Photonics, 2011 296-299.

[7]

Sodre A. C., Boggio J. M., Rieznik A. A., Hernandez-Figueroa H. E., Fragnito H. L., Knight J. C.. Highly efficient generation of broadband cascaded four-wave mixing products. Optics Express, 2008, 16(4): 2816-2828.

[8]

Sodre A. C. J., Marconi J. D., Hernandez-Figueroa H. E., Fragnito H. L.. Broadband cascaded four-wave mixing by using a three-pump technique in optical fibers. Optics Communications, 2009, 282(22): 4436-4439.

[9]

Yang T., Dong J., Liao S., Huang D., Zhang X.. Comparison analysis of optical frequency comb generation with nonlinear effects in highly nonlinear fibers. Optics Express, 2013, 21(7): 8508-8520.

[10]

Melo S. A. S., do Nascimento A. R. Jr, Jr A. C. S., Carvalho L. H. H., Pataca D. M., Oliveira J. C. R. F., . Frequency comb expansion based on optical feedback, highly nonlinear and erbium-doped fibers. Optics Communications, 2013 287-291.

[11]

Agrawal G. P.. Nonlinear fiber optics, Fourth edition, 2006, New York, U. S. A.: Academic Press, 276-278.

[12]

Marhic M. E., Wong K. K. Y., Kazovsky L. G., Tsai T. E.. Continuous-wave fiber optical parametric oscillator. Optics Letters, 2002, 27(16): 1439-1441.

[13]

Physical Review A, 2008, 77(4

[14]

Li J., Xiao X., Kong L., Yang C.. Enhancement of cascaded four-wave mixing via optical feedback. Optics Express, 2012, 20(20): 21940-21945.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/