Large dynamic range SPR measurements using a ZnSe prism

John Canning , Jing Qian , Kevin Cook

Photonic Sensors ›› 2014, Vol. 5 ›› Issue (3) : 278 -283.

PDF
Photonic Sensors ›› 2014, Vol. 5 ›› Issue (3) : 278 -283. DOI: 10.1007/s13320-015-0262-z
Regular

Large dynamic range SPR measurements using a ZnSe prism

Author information +
History +
PDF

Abstract

A large dynamic index measurement range (n = 1 to n = 1.7) using surface plasmon resonance (SPR) shifts was demonstrated with a ZnSe prism at 632.8 nm, limited by the available high index liquid hosts. In contrast to borosilicate based SPR measurements, where angular limitations restrict solvent use to water and require considerable care dealing with Fresnel reflections, the ZnSe approach allows SPR spectroscopies to be applied to a varied range of solvents. An uncertainty in angular resolution between 1.5° and 6°, depending on the solvent and SPR angle, was estimated. The refractive index change for a given glucose concentration in water was measured to be n = (0.114 ± 0.007) /%[C6H12O6]. Given the transmission properties of ZnSe, the processes can be readily extended into the mid infrared.

Keywords

Plasmonics / surface plasmons / surface waves / scattering / spectroscopy / metal optics

Cite this article

Download citation ▾
John Canning, Jing Qian, Kevin Cook. Large dynamic range SPR measurements using a ZnSe prism. Photonic Sensors, 2014, 5(3): 278-283 DOI:10.1007/s13320-015-0262-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proceedings of the Physical Society of London, 1902, 18(1): 269-275.

[2]

Leidberg B, Nylander C, Lunström I. Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators, 1983, 4, 299-304.

[3]

Kooyman R P H, Kolkman H, Gent J V, Greves J. Surface plasmon resonance immunosensors: sensitivity considerations. Analytica Chimica Acta, 1988, 213, 35-45.

[4]

Homola J. Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 2003, 377(3): 528-539.

[5]

Kreuwel H J M, Lambeck P V, Gent J V, Popma T J A. Surface plasmon dispersion and luminescence quenching applied to planar waveguide sensors for the measurement of chemical concentrations. Proc. SPIE, 1987, 798, 218-225.

[6]

Jorgenson R C, Yee S S. A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B: Chemical, 1993, 12(3): 213-220.

[7]

Vukusic P S, Bryan-Brown G P, Sambles J R. Surface plasmon resonance on gratings as a novel means for gas sensing. Sensors and Actuators B: Chemical, 1992, 8(2): 155-160.

[8]

Dostálek J, Homola J, Miler M. Rich information format surface plasmon resonance biosensor based on array of diffraction gratings. Sensors and Actuators B: Chemical, 2005, 107(1): 154-161.

[9]

Ruffato G, Romanato F. Grating-coupled surface plasmon resonance in conical mounting with polarization modulation. Optics Letters, 2012, 37(13): 2718-2720.

[10]

Čtyroký Skalský J, Homola J, Skalskya M. Modelling of surface plasmon resonance waveguide sensor by complex mode expansion and propagation method. Optical and Quantum Electronics, 1997, 29(2): 301-311.

[11]

Nemova G, Kashyap R. Fiber-Bragg-grating-assisted surface plasmon-polariton sensor. Optics Letters, 2006, 31(14): 2118-2120.

[12]

Shevchenko Y Y, Albert J. Plasmon resonances in gold-coated tilted fiber Bragg gratings. Optics Letters, 2007, 32(3): 211-213.

[13]

Shao L Y, Shevchenko Y, Albert J. Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors. Optics Express, 2010, 18(11): 11464-11471.

[14]

Canning J, Karim A, Tzoumis N, Tan Y, Patyk R, Gibson B C. Near orthogonal launch of SPR modes in Au films. Optics Letters, 2014, 39(17): 5038-5041.

[15]

Kretschmann E. Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen. Zeitschrift für Physik, 1971, 241(4): 313-324.

[16]

See examples provided at http://www.bionavis.com/.

[17]

Canning J, Tzoumis N, Beattie J, Gibson B C, Ilagan E. Water on Au sputtered films. Chemical Communications, 2014, 50(65): 9172-9175.

[18]

Wang Y, Pistora J, Lesnak M, Vlcek J, Stanek F. SPR approach for determination of temperature water refractive index alterations. GeoScience Engineering, 2009, VLV(4): 53-59.

[19]

Herminjard S, Sirigu L, Herzig H P, Studemann E, Crottini A, Pellaux J P, . Surface plasmon resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range. Optics Express, 2009, 17(1): 293-303.

[20]

Goswami N, Kar A, Saha A. Long range surface plasmon resonance enhanced electrooptically tunable Goos-Hänchen shift and Imbert-Fedorov shift in ZnSe prism. Optics Communications, 2014, 330, 169-174.

[21]

Lirtsman V, Ziblat R, Golosovsky M, Davidov D, Pogreb R, Sacks-Granek V, . Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth. Journal of Applied Physics, 2005, 98(9): 093506-1-093506-6.

[22]

Pan J, Wei J, Shen J, Guo S, Sheng Y, Zhang X, . Green synthesis of surface plasmons photoluminescence enhancement ZnSe/Au nanocomposites and its bioimaging application. Journal of Physics D: Applied Physics, 2014, 47(4): 045504-045509.

[23]

Shvets G. Plasmonics: metallic nanostructures and their optical properties. Proc. SPIE, 2004, 5221, 124.

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/