Dispersion effects of high-order-mode fiber on temperature and axial strain discrimination

Yanping Xu , Ping Lu , Jia Song , Ping Lu , Liang Chen , Xiaoyi Bao , Xiaopeng Dong

Photonic Sensors ›› 2014, Vol. 5 ›› Issue (3) : 224 -234.

PDF
Photonic Sensors ›› 2014, Vol. 5 ›› Issue (3) : 224 -234. DOI: 10.1007/s13320-015-0249-9
Regualr

Dispersion effects of high-order-mode fiber on temperature and axial strain discrimination

Author information +
History +
PDF

Abstract

A new approach utilizing effects of dispersion in the high-order-mode fibers (HOMFs) to effectively discriminate changes in environmental temperature and axial strain is proposed and experimentally demonstrated. Experimental characterization of a HOMF-based fiber modal interferometer with a sandwich fiber structure exhibits excellent agreements with numerical simulation results. A Fourier transform method of interferometry in the spatial frequency domain is adopted to distinguish mode coupling between different core-guided modes. Distinct phase sensitivities of multiple dispersion peaks are extracted by employing a novel phase demodulation scheme to realize dual-parameter sensing.

Keywords

Optical fiber sensor / temperature and strain discrimination / dispersion

Cite this article

Download citation ▾
Yanping Xu, Ping Lu, Jia Song, Ping Lu, Liang Chen, Xiaoyi Bao, Xiaopeng Dong. Dispersion effects of high-order-mode fiber on temperature and axial strain discrimination. Photonic Sensors, 2014, 5(3): 224-234 DOI:10.1007/s13320-015-0249-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lima H F, Antunes P F, Pinto J D L, Nogueira R N. Simultaneous measurement of strain and temperature with a single fiber Bragg grating written in a tapered optical fiber. IEEE Sensors Journal, 2010, 10(2): 269-273.

[2]

Lu P, Chen Q. Asymmetrical fiber Mach-Zehnder interferometer for simultaneous measurement of axial strain and temperature. IEEE Photonics Journal, 2010, 2(6): 942-953.

[3]

Tan Y N, Zhang Y, Jin L, Guan B O. Simultaneous strain and temperature fiber grating laser sensor based on radio-frequency measurement. Optics Express, 2011, 19(21): 20650-20656.

[4]

Hu L M, Chan C C, Dong X Y, Wang Y P, Zu P, Wong W C, . Photonic crystal fiber strain sensor based on modified Mach-Zehnder interferometer. IEEE Photonics Journal, 2012, 4(1): 114-118.

[5]

Alemohammad H R, Foroozmehr E, Cotten B S, Toyserkani E. A dual-parameter optical fiber sensor for concurrent strain and temperature measurement: design, fabrication, packaging, and calibration. IEEE Journal of Lightwave Technology, 2013, 31(8): 1198-1204.

[6]

Frazao O, Carvalho J P, Ferreira L A, Araujo F M, Santos J L. Discrimination of strain and temperature using Bragg gratings in microstructured and standard optical fibres. Measurement Science and Technology, 2005, 16(10): 2109-2113.

[7]

Frazao O, Marques L M, Santos S, Baptista J M, Santos J L. Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror. IEEE Photonic Technology Letter, 2006, 18(22): 2407-2409.

[8]

Frazao O, Santos J L. Simultaneous measurement of strain and temperature using a Bragg grating structure written in germanosilicate fibres. Journal of Optics A: Pure and Applied Optics, 2004, 6(6): 553-556.

[9]

Frazao O, Romero R, Araujo F M, Ferreira L A, Santos J L. Strain-temperature discrimination using a step spectrum profile fibre Bragg grating arrangement. Sensors and Actuators A: Physical, 2005, 120(2): 490-493.

[10]

Abe I, Kalinowski H J, Frazao O, Santos J L, Nogueira R N, Pinto J L. Superimposed Bragg gratings in high-birefringence fibre optics: three-parameter simultaneous measurements. Measurement Science and Technology, 2004, 15(8): 1453-1457.

[11]

Zhao C L, Zhao J R, Jin W, Ju J, Cheng L, Huang X G. Simultaneous strain and temperature measurement using a highly birefringence fiber loop mirror and a long-period grating written in a photonic crystal fiber. Optics Communications, 2009, 282(20): 4077-4080.

[12]

Liu T, Fernando G F, Zhang Z Y, Grattan K T V. Simultaneous strain and temperature measurements in composites using extrinsic Fabry-Perot interferometric and intrinsic rare-earth doped fiber sensors. Sensors and Actuators A: Physical, 2000, 80(3): 208-215.

[13]

Kishida K, Yamauchi Y, Guzik A. Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh system. Photonic Sensors, 2014, 4(1): 1-11.

[14]

Hotate K, Zou W, Yamashita R K, He Z. Distributed discrimination of strain and temperature based on Brillouin dynamic grating in an optical fiber. Photonic Sensors, 2013, 3(4): 332-344.

[15]

Ramachandran S. Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices. IEEE Journal of Lightwave Technology, 2005, 23(11): 3426-3443.

[16]

Sukhorukov A A, Handmer C J, de Sterke C M, Steel M J. Slow light with flat or offset band edges in few-mode fiber with two gratings. Optics Express, 2007, 15(26): 17954-17959.

[17]

Li S, Li M J, Vodhanel R S. All-optical Brillouin dynamic grating generation in few-mode optical fiber. Optics Letters, 2012, 37(22): 4660-4662.

[18]

Sun B, Wang A, Xu L, Gu C, Zhou Y, Lin Z, . Transverse mode switchable fiber laser through wavelength tuning. Optics Letters, 2013, 38(5): 667-669.

[19]

Menashe D, Tur M, Danziger Y. Interferometric technique for measuring dispersion of high order modes in optical fibres. Electronics Letters, 2001, 37(24): 1439-1440.

[20]

Ahn T J, Jung Y, Oh K, Kim D Y. Optical frequency-domain chromatic dispersion measurement method for higher-order modes in an optical fiber. Optics Express, 2005, 13(25): 10040-10048.

[21]

Hamel P, Jaouën Y, Gabet R, Ramachandran S. Optical low-coherence reflectometry for complete chromatic dispersion characterization of few-mode fibers. Optics Letters, 2007, 32(9): 1029-1031.

[22]

Cheng J, Pedersen M E V, Wang K, Xu C, Grüner-Nielsen L, Jakobsen D. Time-domain multimode dispersion measurement in a higherorder-mode fiber. Optics Letters, 2012, 37(3): 347-349.

[23]

Wang Q, Farrell G, Yan W. Investigation on single-mode-multimode-single-mode fiber structure. IEEE Journal of Lightwave Technology, 2008, 26(5): 512-519.

[24]

Wu Q, Semenova Y, Wang P, Farrell G. High sensitivity SMS fiber structure based refractometer — analysis and experiment. Optics Express, 2011, 19(9): 7937-7944.

[25]

Kumar M, Kumar A, Tripathi S M. A comparison of temperature sensing characteristics of SMS structures using step and graded index multimode fibers. Optics Communications, 2014, 312(1): 222-226.

[26]

Choi H Y, Kim M J, Lee B H. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Optics Express, 2007, 15(9): 5711-5720.

[27]

Lu P, Men L, Sooley K, Chen Q. Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature. Applied Physics Letters, 2009, 94(13): 131110-1-131110-3.

[28]

Zhang S, Zhang W, Gao S, Geng P, Xue X. Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper. Optics Letters, 2012, 37(21): 4480-4482.

[29]

Li L C, Xia L, Xie Z H, Liu D M. All-fiber Mach-Zehnder interferometers for sensing applications. Optics Express, 2012, 20(10): 11109-11120.

[30]

Yao Q Q, Meng H Y, Wang W, Xue H C, Xiong R, Huang B, . Simultaneous measurement of refractive index and temperature based on a core-offset Mach-Zehnder interferometer combined with a fiber Bragg grating. Sensors and Actuators A: Physical, 2014, 209(1): 73-77.

[31]

Ni K, Li T, Hu L M, Qian W W, Zhang Q Y, Jin S Z. Temperature-independent curvature sensor based on tapered photonic crystal fiber interferometer. Optics Communications, 2012, 285(24): 5148-5150.

[32]

Xu Y P, Lu P, Qin Z G, Harris J, Baset F, Lu P, . Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer. Optics Express, 2013, 21(3): 3031-3042.

[33]

Yuan L. Recent progress of in-fiber integrated interferometers. Photonic Sensors, 2011, 1(1): 1-5.

[34]

Yu C, Chen X, Gong Y, Wu Y, Rao Y, Peng G. Simultaneous force and temperature measurement using optical microfiber asymmetrical interferometer. Photonic Sensors, 2014, 4(3): 242-247.

[35]

Latifi H, Zibaii M I, Hosseini S M, Jorge P. Nonadiabatic tapered optical fiber for biosensor applications. Photonic Sensors, 2012, 2(4): 340-356.

[36]

Sakai J, Kimura T. Design of a miniature lens for semiconductor laser to single-mode fiber coupling. IEEE Journal of Quantum Electronics, 1980, 16(10): 1059-1067.

[37]

Lu P, Harris J, Xu Y, Lu Y, Chen L, Bao X. Simultaneous refractive index and temperature measurements using a tapered bend-resistant fiber interferometer. Optics Letters, 2012, 37(22): 4567-4569.

[38]

Jin W, Michie W C, Thursby G, Konstantaki M, Culshaw B. Simultaneous measurement of strain and temperature: error analysis. Optical Engineering, 1997, 36(2): 598-609.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/