Dispersion effects of high-order-mode fiber on temperature and axial strain discrimination
Yanping Xu , Ping Lu , Jia Song , Ping Lu , Liang Chen , Xiaoyi Bao , Xiaopeng Dong
Photonic Sensors ›› 2014, Vol. 5 ›› Issue (3) : 224 -234.
Dispersion effects of high-order-mode fiber on temperature and axial strain discrimination
A new approach utilizing effects of dispersion in the high-order-mode fibers (HOMFs) to effectively discriminate changes in environmental temperature and axial strain is proposed and experimentally demonstrated. Experimental characterization of a HOMF-based fiber modal interferometer with a sandwich fiber structure exhibits excellent agreements with numerical simulation results. A Fourier transform method of interferometry in the spatial frequency domain is adopted to distinguish mode coupling between different core-guided modes. Distinct phase sensitivities of multiple dispersion peaks are extracted by employing a novel phase demodulation scheme to realize dual-parameter sensing.
Optical fiber sensor / temperature and strain discrimination / dispersion
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
/
| 〈 |
|
〉 |