Enhancement of the sensitivity of gas sensor based on microstructure optical fiber

Monir Morshed , Md. Imran Hasan , S. M. Abdur Razzak

Photonic Sensors ›› 2014, Vol. 5 ›› Issue (4) : 312 -320.

PDF
Photonic Sensors ›› 2014, Vol. 5 ›› Issue (4) : 312 -320. DOI: 10.1007/s13320-015-0247-y
Regular

Enhancement of the sensitivity of gas sensor based on microstructure optical fiber

Author information +
History +
PDF

Abstract

This paper proposes the design and characterization of microstructure optical fiber for gas sensing applications. The aim is to detect toxic and colorless gases over a wide transmission band covering 0.80 µm to 2.00 µm wavelength. Numerical investigation is carried out by using the finite element method (FEM). The numerical study shows that sensitivity of the proposed sensor is moderately increased by introducing four non-circular holes around the defected core of photonic crystal fiber and the confinement loss is also reduced. Furthermore, we confirm that increasing the diameter of central air core and size of the non-circular holes can improve the relative sensitivity and the confinement loss is reduced by increasing the diameter of air holes in the cladding. The enhancement of the relative sensitivity is more than 27.58% (0.1323 to 0.1688) at the wavelength λ=1.33µm that is the absorption line of methane (CH4) and hydrogen fluoride (HF) gases. The confinement loss of the fiber is 1.765×10-8 dB/m.

Keywords

Confinement loss / gas sensor / hollow core photonic crystal fiber / microstructure fiber / relative sensitivity

Cite this article

Download citation ▾
Monir Morshed, Md. Imran Hasan, S. M. Abdur Razzak. Enhancement of the sensitivity of gas sensor based on microstructure optical fiber. Photonic Sensors, 2014, 5(4): 312-320 DOI:10.1007/s13320-015-0247-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Russell P.. Photonic crystal fibers. Science, 2003, 299(5605): 358-362.

[2]

Nielsen M., Jacobsen C., Mortensen N., Folkenberg J., Simonsen H.. Low-loss photonic crystal fibers for transmission systems and their dispersion properties. Optics Express, 2004, 12(7): 1372-1376.

[3]

Temelkuran B., Hart S. D., Benoit G., Joannopoulos J. D., Fink Y.. Wavelength-scalable hollow optical fibers with large photonic band gaps for CO2 laser transmission. Nature, 2002, 420(6916): 650-653.

[4]

Du H.. SERS-based photonic crystal fiber sensing platform. Proc. SPIE, 2006, 6083, 74.

[5]

Bing P., Li J., Lu Y., Di Z., Yan X.. Theoretical and experimental researches on a PCF-based SPR sensor. Optoelectronics Letters, 2012, 8(4): 0245-0248.

[6]

Yuan Y., Guo Z., Ding L.. Influence of metal layer on the transmitted spectra of SPR-based optical fiber sensor. Optoelectronics Letters, 2010, 6(5): 346-349.

[7]

Olyaee S., Dehghani A. A.. High resolution and wide dynamic range pressure sensor based on two-dimensional photonic crystal. Photonic Sensors, 2012, 2(1): 92-96.

[8]

Olyaee S., Dehghani A. A.. Nano-pressure sensor using high quality photonic crystal cavity resonator. 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), 2012 1-4.

[9]

Petrovich M. N., Brakel A., Poletti F., Mukasa K., Austin E., Finazzi V., . Microstructured fibers for sensing applications. Proceedings of SPIE - The International Society for Optical Engineering, 2005, 6005(1): 60050E-1–60050E–15.

[10]

Ritari T., Tuominen J., Ludvigsen H., Petersen J., Sørensen T., Hansen T., . Gas sensing using air-guiding photonic bandgap fibers. Optics Express, 2004, 12(17): 4080-4087.

[11]

Fini J. M.. Microstructure fibers for optical sensing in gases and liquids. Measurement Science and Technology, 2004, 15(6): 1120-1128.

[12]

Yu X., Kwok Y. C., Khairudin N. A., Shum P.. Absorption detection of cobalt (II) ions in an index-guiding microstructured optical fiber. Sensors and Actuators: B Chemical, 2009, 137(2): 462-466.

[13]

Martelli C., Canning J., Stocks D., Crossley M. J.. Water-soluble porphyrin detection in a pure-silica photonic crystal fiber. Optics Letters, 2006, 31(14): 2100-2102.

[14]

Park J., Lee S., Kim S., Oh K.. Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center. Optics Express, 2011, 19(3): 1921-1929.

[15]

Olyaee S., Naraghi A.. Design and optimization of index-guiding photonic crystal fiber gas sensor. Photonic Sensor, 2013, 3(2): 131-136.

[16]

Smolka S., Barth M., Benson O.. Highly efficient fluorescence sensing with hollow core photonic crystal fibers. Optics Express, 2007, 15(20): 12783-12791.

[17]

Hoo Y. L., Jin W., Ju J., Ho H. L.. Numerical investigation of a depressed-index core photonic crystal fiber for gas sensing. Sensors and Actuators B: Chemical, 2009, 139(2): 460-465.

[18]

Olyaee S., Naraghi A., Ahmadi V.. High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring. Optik - International Journal for Light and Electron Optics, 2014, 125(1): 596-600.

[19]

Zhang L., Ren G., Yao J.. A new photonic crystal fiber gas sensor based on evanescent wave in terahertz wave band: design and simulation. Optoelectronics Letters, 2013, 9(6): 0438-0440.

[20]

Olyaee S., Taghipour F.. Doped-core octagonal photonic crystal fiber (O-PCF) with ultra-flattened nearly zero dispersion and low confinement loss in a wide wavelength range. Fiber and Integrated. Optics, 2012, 31(3): 178-185.

[21]

Saitoh K., Koshiba M.. Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers. IEEE Journal of Quantum Electronics, 2002, 38(7): 927-933.

[22]

Brechet F., Marcou J., Pagnoux D., Roy P.. Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method. Optical Fiber Technology, 2000, 6(2): 181-191.

[23]

Habib Md S., Habib Md S., Razzak S. M. A., Hossain Md A.. Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Optical Fiber Technology, 2013, 19(5): 461-467.

[24]

Saitoh K., Koshiba M.. Leakage loss and group velocity dispersion in air-corephotonic bandgap fibers. Optics Express, 2003, 11(23): 3100-3109.

[25]

Izawa T., Sudo S.. Optical Fibers: Materials and Fabrication, 1987, Berlin, Germany: Springer-Verlag

[26]

Hoo Y. L., Jin W., Shi C., Ho H. L., Wang D. N., Ruan S. C.. Design and modeling of a photonic crystal fiber gas sensor. Applied Optics, 2003, 42(18): 3509-3515.

[27]

Broeng J., Mogilevstev D., Barkou S. E., Bjarklev A.. Photonic crystal fibers: a new class of optical waveguides. Optical Fiber Technology, 1999, 5(3): 305-330.

[28]

Bise R. T., Trevor D. J.. Sol-gel derived microstructured fiber: fabrication and characterization. Optical Fiber Communications Conference (OFC), 2005

[29]

Ebendorff-Heidepriem H., Petropoulos P., Asimakis S., Finazzi V., Moore R., Frampton K., . Bismuth glass holey fibers with high nonlinearity. Optics Express, 2004, 12(21): 5082-5087.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/