Photovoltaic properties of thermally-grown selenium-doped silicon photodiodes for infrared detection applications

Oday A. Hammadi

Photonic Sensors ›› 2014, Vol. 5 ›› Issue (2) : 152 -158.

PDF
Photonic Sensors ›› 2014, Vol. 5 ›› Issue (2) : 152 -158. DOI: 10.1007/s13320-015-0241-4
Regular

Photovoltaic properties of thermally-grown selenium-doped silicon photodiodes for infrared detection applications

Author information +
History +
PDF

Abstract

In this work, the photovoltaic properties of selenium-doped silicon photodiodes were studied. Influence of illumination of the impurity absorption range on the current-voltage and spectral characteristics of the fabricated device were considered. The photoresponse dependencies on the electric intensity, current, and radiation power at the sample were observed. Results obtained in this work showed that the current-sensitivity of the fabricated structures at the forward bias was rather higher than that of photoresistors. The photosensitivity and detectivity were up to 2.85×10−16W·Hz−1/2 and 2.1×1011cm·Hz1/2W−1, respectively.

Keywords

Selenium / Applied Electric Field / Apply Physic Letter / Breakdown Point / Photovoltaic Property

Cite this article

Download citation ▾
Oday A. Hammadi. Photovoltaic properties of thermally-grown selenium-doped silicon photodiodes for infrared detection applications. Photonic Sensors, 2014, 5(2): 152-158 DOI:10.1007/s13320-015-0241-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ismail R A, Abdulrazaq O A, Hadi A A, Hamadi O A. Characterization of Si p-n photodetectors produced by laser-induced diffusion. International Journal of Modern Physics, 2005, 19(31): 4619-4628.

[2]

Hamadi O A, Yahiya K Z. Physics: heterojunction detectors optical and electrical properties of selenium-antimony heterojunction formed on silicon substrate. University of Sharjah Journal of Pure and Applied Sciences, 2007, 4(2): 1-11.

[3]

Hamadi O A. Profiling of antimony diffusivity in silicon substrates using laser-induced diffusion technique. Iraqi Journal of Applied Physics Letters, 2010, 3(1): 23-26.

[4]

Khan P A R, Butta S M, Malik S A. Modeling of transport properties of amorphous silicon solar cells. Iraqi Journal of Applied Physics Letters, 2010, 6(1): 25-32.

[5]

Vydyanath H R, Lorenzo J S, Kroger F A. Defect pairing diffusion, and solubility studies in selenium-doped silicon. Journal of Applied Physics, 1978, 49(12): 5928-5937.

[6]

Vydyanath H R, Helm W J, Lorenzo J S, Hoelke S T. Development of selenium-doped silicon for 3–5 μm applications. Infrared Physics, 1979, 19(1): 93-102.

[7]

Hadi A A K, Hamadi O A. Optoelectronic characteristics of as-doped silicon photodetectors produced by LID technique. Iraqi Journal of Applied Physics Letters, 2008, 1(2): 23-26.

[8]

Sze S M. Semiconductor devices physics and technology, 1981, Taiwan, China: Murray Hill, 103-154.

[9]

Maher A T, Streetman B G, Holonyak N J. Infrared detection properties of Zn-doped Si p-i-n diodes. IEEE Transaction on Electron Devices, 1969, 16(11): 963-964.

[10]

Haroutyunyan V M, Adamyan Z N, Barseghyan R S, Gasparyan F V, Azaryan M H, Semerdjian B O, . Phenomena in silicon photodiodes doped with Zn and S. Infrared Physics, 1985, 26(5): 267-272.

[11]

Sclar N. The effect of dopant diffusion vapor pressure on the properties of sulfur and selenium doped silicon infrared detectors. Journal of Applied Physics, 1981, 52(8): 5207-5217.

[12]

Henry M O, Campion J D, McGuigan K G, Thewalt M L W, Lightowlers E C. A photoluminescence study of zinc-implanted silicon. Materials Science and Engineering: B, 1989, 4(1–4): 201-204.

[13]

Kurmashev S D, Stafeev V I, Vikulin I, Sofronkov A N. Injection-amplification IR photodiodes. Proc. SPIE, 1997, 3182, 59-67.

[14]

Stafeev V I. Photodetectors with internal injection amplification. Applied Physics, 2007, 2, 82-85.

[15]

Vikulin I M, Kurmashev S D, Stafeev V I. Injection-based photodetectors. Semiconductors, 2008, 42(1): 112-127.

[16]

Hu S, Han P, Wang S, Mao X, Li X, Gao L. Structural and optoelectronic properties of selenium-doped silicon formed using picosecond pulsed laser mixing. Physica Status Solidi (A) Applications and Materials Science, 2012, 209(12): 2521-2526.

[17]

Taleb A, Al-Naimee K A, Ahmed S S, Meucci R. Efficiency enhancement of photovoltaic silicon cell by ultrashort laser pulses. Iraqi Journal of Applied Physics, 2009, 5(2): 33-35.

[18]

Hamoudi W K, Ali R O D. Structural characteristics study of indium diffusion in silicon using a pulsed Nd:YAG laser. Iraqi Journal of Applied Physics, 2005, 1(1): 34-38.

[19]

Mailoa J P, Akey A J, Simmons C B, Hutchinson D, Mathews J, Sullivan J T, . Room-temperature sub-band gap optoelectronic response of hyperdoped silicon. Nature Communications, 2014, 5, 1-8.

[20]

Grimmeiss H G, Janzen E, Skarstam B. Electronic properties of selenium-doped silicon. Journal of Applied Physics, 1980, 51(7): 3740-3745.

[21]

Vydyanath H R, Lorenzo J S, Kröger F A. Defect pairing diffusion, and solubility studies in selenium-doped silicon. Journal of Applied Physics, 1978, 49(12): 5928-5937.

[22]

Gao L, Han P, Mao X, Fan Y, Hu S, Zhao C, . Deep energy levels formed by Se implantation in Si. Chinese Physics Letters, 2011, 28(3): 036108-1-036108-2.

[23]

Astrov Y A, Portsel L M, Lodygin A N, Shuman V B. Planar microdischarge device for high-speed infrared thermography: application of selenium-doped silicon detectors. Journal of Applied Physics, 2008, 103(11): 114512-1-114512-6.

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/