Simultaneous force and temperature measurement using optical microfiber asymmetrical interferometer

Caibin Yu , Xiaoxiao Chen , Yuan Gong , Yu Wu , Yunjiang Rao , Gangding Peng

Photonic Sensors ›› 2013, Vol. 4 ›› Issue (3) : 242 -247.

PDF
Photonic Sensors ›› 2013, Vol. 4 ›› Issue (3) : 242 -247. DOI: 10.1007/s13320-014-0201-4
Article

Simultaneous force and temperature measurement using optical microfiber asymmetrical interferometer

Author information +
History +
PDF

Abstract

A novel optical microfiber asymmetric Fabry-Perot interferometric (MAFPI) sensor is developed for simultaneous measurement of force and temperature. The MAFPI structure is formed by a weak fiber Bragg grating (FBG), a section of the microfiber, and a cleaved fiber end surface. The narrowband beam reflected from the low-reflectivity FBG and the broadband beam from the Fresnel reflection interfere lead to its unique sensing performance. The force sensing is performed by detecting the bending-loss induced fringe contrast changes, while the Bragg wavelength shift is employed for temperature measurement. Sensitivities of 9.8 pm/°C and 0.025 dB/μN were obtained experimentally for temperature and force measurements, respectively.

Keywords

Optical microfiber / weak FBG / interferometric

Cite this article

Download citation ▾
Caibin Yu, Xiaoxiao Chen, Yuan Gong, Yu Wu, Yunjiang Rao, Gangding Peng. Simultaneous force and temperature measurement using optical microfiber asymmetrical interferometer. Photonic Sensors, 2013, 4(3): 242-247 DOI:10.1007/s13320-014-0201-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tong L M, Gattass R R, Ashcomv J B, He S L, Lou J Y, Shen M Y, . Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 2003, 426(6968): 816-819.

[2]

Brambilla G. Optical fiber nanowires and microwires: a review. Journal of Optics, 2010, 12(4): 043001.

[3]

Scheuer J, Sumetsky M. Trap-door optical buffering using a flat-top coupled microring filter: the superluminal cavity approach. Optics Letters, 2013, 38(18): 3534-3537.

[4]

Zhang L, Lou J Y, Tong L M. Polymer single-nanowire optical sensors. Photonic Sensors, 2011, 1(1): 31-42.

[5]

Ismaeel R, Lee T, Ding M, Belal M, Brambilla G. Optical microfiber passive components. Laser and Photonics Reviews, 2013, 7(3): 350-384.

[6]

Gu F X, Zhang L, Yin X F, Tong L M. Polymer single-nanowire optical sensors. Nano Letters, 2008, 8(9): 2757-2761.

[7]

Wu Y, Rao Y J, Chen Y, Gong Y. Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators. Optics Express, 2009, 17(20): 18142-18147.

[8]

Jiang X S, Tong L M, Vienne G, Guo X, Albert T, Yang Q, Yang D R. Demonstration of optical microfiber knot resonators. Applied Physics Letters, 2006, 88(22): 223501.

[9]

Sumetsky M, Dulashko Y, Fini J M, Hale A. Optical microfiber loop resonator. Applied Physics Letters, 2005, 86, 161108.

[10]

Kou J L, Feng J, Wang Q J, Xu F, Lu Y Q. Microfiber-probe-based ultrasmall interferometric sensor. Optics Letters, 2010, 35(13): 2308.

[11]

Sumetsky M. Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer. Optics Express, 2004, 12(15): 3521-3531.

[12]

Xu F, Horak P, Brambilla G. Optical microfiber coil resonator refractometric sensor. Optics Express, 2007, 15(12): 7888-7893.

[13]

Xu F, Brambilla G. Demonstration of a refractometric sensor based on optical microfiber coil resonator. Applied Physics Letters, 2008, 92(10): 101126.

[14]

Luo W, Kou J L, Chen Y, Xu F, Lu Y Q. Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor. Applied Physics Letters, 2012, 101(13): 133502.

[15]

Liu Y, Meng C, Zhang A P, Xiao Y, Yu H, Tong L M. Compact microfiber Bragg gratings with high-index contrast. Optics Letters, 2011, 36(16): 3115-3117.

[16]

Ran Y, Tan Y N, Sun L P, Gao S, Li J, Jin L, . 193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing. Optics Express, 2011, 19(19): 18577-18583.

[17]

Gao S, Jin L, Ran Y, Sun L P, Li J, Guan B O. Temperature compensated microfiber Bragg gratings. Optics Express, 2012, 20(16): 18281-18286.

[18]

Fang X, Liao C R, Wang D N. Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. Optics Letters, 2010, 35(7): 1007-1009.

[19]

Li J, Shen X, Sun L P, Guan B O. Characteristics of microfiber Fabry-Perot resonators fabricated by UV exposure. Optics Express, 2013, 21(10): 12111-12121.

[20]

Zhang J, Sun Q, Liang R, Wo J, Liu D, Shum P. Microfiber Fabry-Perot interferometer fabricated by taper-drawing technique and its application as a radio frequency interrogated refractive index sensor. Optics Letters, 2012, 37(14): 2925-2927.

[21]

Gong Y, Yu C B, Wang T T, Liu X P, Wu Y, Rao Y J, . Highly sensitive force sensor based on optical microfiber asymmetrical Fabry-Perot interferometer. Optics Express, 2014, 22(3): 3578-3584.

[22]

Wei T, Han Y, Li Y, Tsai H, Xiao H. Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement. Optics Express, 2008, 16(8): 5764.

[23]

Barmenkov Y O, Zalvidea D, Torres-Peiró S, Cruz J L, Andrés M V. Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings. Optics Express, 2006, 14(14): 6394-6399.

[24]

Rao Y J. Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors. Optical Fiber Technology, 2006, 12(3): 227-237.

[25]

Review of Scientific Instruments, 2007, 78(6066104

[26]

Xie F, Chen X F, Zhang L, Song M. Multi-parameter and multi-functional fiber grating sensing technology. Optics Laser Engineering, 2006, 44, 1088.

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/