Recent research and development of optical fiber monitoring in communication systems

Kunihiro Toge , Fumihiko Ito

Photonic Sensors ›› 2012, Vol. 3 ›› Issue (4) : 304 -313.

PDF
Photonic Sensors ›› 2012, Vol. 3 ›› Issue (4) : 304 -313. DOI: 10.1007/s13320-013-0127-2
Review

Recent research and development of optical fiber monitoring in communication systems

Author information +
History +
PDF

Abstract

Recent progress on optical fiber monitoring in the optical communication systems is reviewed along with current optical fiber monitoring and diagnosing problems in deployed access, trunk and submarine communication systems.

Keywords

Optical fiber monitoring / diagnosis / PON monitoring / OFDR / OTDR

Cite this article

Download citation ▾
Kunihiro Toge, Fumihiko Ito. Recent research and development of optical fiber monitoring in communication systems. Photonic Sensors, 2012, 3(4): 304-313 DOI:10.1007/s13320-013-0127-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ministry of Internal AffairsCommunications in Japan Information and communications statistics and database, 2012

[2]

Arii M, Azuma Y, Enomoto Y, Suzuki K, Araki N, Uruno S, . Optical fiber network operation technologies for expanding optical access network services. NTT Technical Review, 2007, 5(2): 32-38.

[3]

Enomoto Y, Izumita H, Mine K, Tomita N. Design and performance of novel optical fiber distribution and management system with testing functions in central office. Journal of Lightwave Technology, 2011, 29(12): 1818-1834.

[4]

ITU-T Recommendation L.41 Maintenance wavelength on fibres carrying signals, 2000

[5]

Reichmann K C, Frigo N J, Zhou X. In-service OTDR limitations in CWDM systems caused by spontaneous Stokes and anti-Stokes Raman scattering. IEEE Photonics Technology Letters, 2004, 16(7): 1787-1789.

[6]

Furukawa S, Tanaka K, Koyamada Y, Sumida M. Enhanced coherent OTDR for long span optical transmission lines containing optical fiber amplifiers. IEEE Photonics Technology Letters, 1995, 7(5): 540-542.

[7]

ITU-T Recommendation G.979 Characteristics of monitoring systems for optical submarine cable systems, 2012

[8]

Enomoto Y, Izumita H, Nakamura M. Over 31.5 dB dynamic range optical fiber line testing system with optical fiber fault isolation function for 32-branched PON. Proc. Optical Fiber Communication Conference 2003 (OFC2003), Mar. 23–28, 2011, 2, 608-609.

[9]

Koshikiya Y, Araki N, Izumita H, Ito F. Simple and cost-effective fault location technique using bi-directional OTDR and in-service line testing criteria for PONs. Proc. European Conference on Communications 2005 (ECOC2005), Sep. 25–29, 2005, 1, 83-84.

[10]

Tanaka K, Tateda M, Inoue Y. Measuring the individual attenuation distribution of passive branched optical networks. IEEE Photonics Technology Letters, 1996, 8(7): 915-917.

[11]

U. Hilbk, M. Burmeister, B. Hoen, T. Hermes, J. Saniter, and F. Westphal, “Selective OTDR measurements at the central office of individual fiber links in a PON,” presented at Proc. Conference on Optical Fiber Communication (OFC 97), Dallas, America, Feb. 16–21, 1997.

[12]

Iida D, Honda N, Izumita H, Ito F. Design of identification fibers with individually assigned Brillouin frequency shifts for monitoring passive optical networks. Journal of Lightwave Technology, 2007, 25(5): 1290-1297.

[13]

Ito F, Takahashi H, Toge K. End-reflection assisted brillouin measurement for PON monitoring. Proc. CLEO-PR&OECC/PS 2013, MS2-1, 2013

[14]

Takahashi H, Ito F, Kito C, Toge K. Individual loss distribution measurement in 32-blanched PON using pulsed pump-probe Brillouin analysis. Optics Express, 2013, 21(6): 6739-6748.

[15]

Rogers A J. Polarization-optical time domain reflectometry: a technique for the measurement of field distributions. Applied Optics, 1981, 20(6): 1060-1074.

[16]

Ellison J G, Siddiqui A S. Automatic matrix-based analysis method for extraction of optical fiber parameters from polarimetric optical time domain reflectometry data. Journal of Lightwave Technology, 2000, 18(9): 1226-1232.

[17]

Galtarossa A, Palmieri L. Spatially resolved PMD measurements. Journal of Lightwave Technology, 2004, 22(4): 1103-1115.

[18]

Goto R, Tanigawa S, Matsuo S, Himeno K. On-spool PMD estimation method for low-PMD fibers with high repeatability by local-DGD measurement using POTDR. Journal of Lightwave Technology, 2006, 24(11): 3914-3919.

[19]

Dong H, Shum P, Zhou J Q, Ning G X, Gong Y D, Wu C Q. Spectral-resolved backreflection measurement of polarization mode dispersion in optical fibers. Optics Letters, 2007, 32(12): 1665-1667.

[20]

D. Fritzsche, M. Paul, L. Schuerer, A. Ehrhardt, D. Breuer, W. Weiershausen, et al., “Measuring the link distribution of PMD: field trial using an RS-POTDR,” presented at Proc. of OFC/NFOEC 2008, San Diego, California, America, Feb. 24–28, 2008.

[21]

Huttner B, Reecht J, Gisin N, Passy R, Weid J P. Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry. IEEE Photonics Technology Letters, 1998, 10(10): 1458-1460.

[22]

Wegmuller M, Legre M, Gisin N. Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry. Journal of Lightwave Technology, 2002, 20(5): 800-807.

[23]

Ito F, Fan X, Koshikiya Y. Long-range coherent OFDR with light source phase noise compensation. Journal of Lightwave Technology, 2012, 30(8): 1015-1024.

[24]

Fan X, Koshikiya Y, Ito F. Phase-noise-compensated optical frequency domain reflectometry. IEEE Journal of Quantum Electronics, 2009, 45(6): 594-602.

[25]

Fan X, Koshikiya Y, Ito F. Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated OFDR. Optics Express, 2011, 19(20): 19122-19128.

[26]

Ito F, Koshikiya Y, Fan X. Identification of high-PMD sections along installed optical cables with long range OFDR. Proc. Optical Fiber Communication Conference (OFC2013), Anaheim, America, Mar. 17–21, 2013 1-3.

[27]

Okada K, Hashimoto K, Shibata T, Nagaki Y. Optical cable fault location using correlation technique. Electronics Letters, 1980, 16(16): 629-630.

[28]

Nazarathy M, Newton S A, Giffard R P, Moberly D S, Sischka F, Trutna W R, . Real-time long range complementary correlation optical time domain reflectometer. Journal of Lightwave Technology, 1989, 7(1): 24-38.

[29]

Sumida M. Optical time domain reflectometry using an M-ary FSK probe and coherent detection. IEEE/OSA Journal Lightwave Technology, 1996, 14(11): 2483-2491.

[30]

Iida H, Koshikiya Y, Ito F, Tanaka K. Ultra high sensitive coherent optical time domain reflectometry employing frequency division multiplexing. Journal of Lightwave Technology, 2012, 30(8): 1121-1126.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/