Performance study of silica-on-silicon based multimode interference (MMI) optical coupler

A. Zahed Chowdhury

Photonic Sensors ›› 2013, Vol. 4 ›› Issue (1) : 34 -42.

PDF
Photonic Sensors ›› 2013, Vol. 4 ›› Issue (1) : 34 -42. DOI: 10.1007/s13320-013-0117-4
Article

Performance study of silica-on-silicon based multimode interference (MMI) optical coupler

Author information +
History +
PDF

Abstract

In recent years, the silica-on-silicon based multimode interference (MMI) optical waveguide is an interesting research topic. It is being advanced various researches on the silica based MMI coupler. This paper represents the considerations of the optimal design of the silica-on-silicon based MMI optical coupler for better performance. For that, we have illustrated the simulation results on a particular case of the 4×4 silica-on-silicon based MMI coupler. From the simulation results, it is seen that the performance of the MMI coupler depends on multiple width and length combinations of the MMI waveguide. The results also show that the width of the multimode waveguide could not be too small or too large for optimal performance, and at the widths, 100 μm, 120 μm and 130 μm, the performance could be optimized and be almost 0.62–0.64 in a given length range. Finally, the results have been compared with the optical coupler presently available in the market and show that the silica-on-silicon based MMI coupler is much more efficient in terms of losses and the performance associated with it and the size of the coupler.

Keywords

Optical coupler / planar lightwave circuits (PLCs) / silica-on-silicon waveguide / multimode interference (MMI) coupler / performance (PF)

Cite this article

Download citation ▾
A. Zahed Chowdhury. Performance study of silica-on-silicon based multimode interference (MMI) optical coupler. Photonic Sensors, 2013, 4(1): 34-42 DOI:10.1007/s13320-013-0117-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Van Zyl H G. Modeling of integrated optic components for lightwave communications systems using the beam propagation method. M.Eng.dissertation, Rand Afrikaans University, Johannesburg, Republic of South Africa, 2001

[2]

Solehmainen K, Kapulainen M, Harjanne M, Aalto T. Adiabatic and multimode interference couplers on silicon-on-insulator. IEEE Photonics Technology Letters, 2006, 18(21): 2287-2289.

[3]

Ramponi R, Marangoni M, Osellame R. Dispersion of the ordinary refractive-index change in a proton-exchanged LiNbO3 waveguide. Applied Physics Letters, 2001, 78(15): 2098-2100.

[4]

Li Y, Henry C. Silica-based optical integrated circuits. IEEE Proceedings in Optoelectronics, 1996, 143(5): 263-280.

[5]

Himeno A, Kato K, Miya T. Silica-based planar lightwave circuits. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 4(6): 913-924.

[6]

Trinh P D, Yegnanarayanan S, Coppinger F, Jalali B. Silicon-on-insulator (SOI) phased-array wavelength multi/multiplexer with extremely low-polarization sensitivity. IEEE Photonics Technology Letters, 1997, 9(7): 940-942.

[7]

Baby A, Singh B R. Improve design of 8-channel silicon-on-insulator (SOI) arrayed waveguide grating (AWG) multiplexer using tapered entry into the slab waveguides. Fiber and Integrated Optics, 2004, 23(5): 365-373.

[8]

Yang J, Zhou Q, Chen R T. Polymide-waveguide-based thermal optical switch usintotal-internal-reflection effect. Applied Physics Letters, 2002, 81(16): 2947-2949.

[9]

He J J, Lamontagne B, Delâge A, Erickson L, Davies M, Koteles E S. Monolithic integrated wavelength demultiplexer based on a waveguide rowland circle grating in InGaAsP/InP. IEEE Journal of Lightwave Technology, 1998, 16(4): 631-638.

[10]

Takenaka M, Nakano Y. InP photonic wire waveguide using InAlAs oxide cladding layer. Optics Express, 2007, 15(13): 8422-8427.

[11]

Alain Pham, Ph.D. Planar lightwave circuits: an emerging market for refractive index profile analysis. Application note 053, Industrial and scientific division, 2004, Canada: EXFO electro-optical engineering Inc.

[12]

Shi Y. Design, simulation of characterization of some planar lightwave circuits (PLC), 2008, Stockholm, Sweden: KTH School of Information and communication Technology

[13]

Hsu C W, Chen H L, Wang W S. Compact Y-branch power splitter based on simplified coherent coupling. IEEE Photonics Technology Letters, 2004, 15(8): 1103-1105.

[14]

Smit M K, Dam C V. Phasar based WDM devices: principles, design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(2): 236-250.

[15]

Uetsuka H. AWG technologies for dense WDM applications. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(2): 393-402.

[16]

S. Sohma, T. Watanabe, T. Shibata, and H. Takahashi, “Compact and low power consumption 16×16 optical matrix switch with silica based PLC technology,” presented at Optical Fiber Communication Conference 2005, Anaheim, California, USA, Mar. 6–11, vol. 4, 2005.

[17]

Asahara Y, Nakayama S, Maruyama O, Ohmi S, Sakai H, Yoneda Y. Design and characteristics of a demultiplex star coupler. Optical Fiber Communication Conference 1998, New Orleans, Louisiana, USA, WQ7, Jan. 25, 1998

[18]

Little B E, Murphy T. Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures. IEEE Photonics Technology Letters, 1997, 9(12): 1607-1609.

[19]

Soldano L B, Pennings E C M. Optical multimode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 1995, 13(4): 615-627.

[20]

Tseng S Y, Fuentes-Hernandez C, Owens D, Kippelen B. Variable splitting ratio 2×2 MMI couplers using multimode waveguide holograms. Optics Express, 2007, 15(14): 9015-9021.

[21]

Shi Y, Dai D. Design of a compact multimode interference coupler based on deeply-etched SiO2 ridge waveguides. Optics Communications, 2007, 271(2): 404-407.

[22]

Ulrich R. Light-propagation and imaging in planar optical waveguides. Nouvelle Revue d’Optique, 1975, 6(5): 253-264.

[23]

Ulrich R, Ankele G. Self-imaging in homogeneous planar optical waveguides. Applied Physics Letters, 1975, 27(6): 337-339.

[24]

Soldano L B, Veerman F B, Smit M K, Verbeek B, Dubost A H, Pennings E C M. Planar monomode optical couplers based on multimode interference effects. Journal of Lightwave Technology, 1992, 10(12): 1843-1850.

[25]

Wang F, Yang J, Chen L, Jiang X, Wang M. Optical switch based on multimode interference coupler. IEEE Photonics Technology Letters, 2006, 18(2): 421-423.

[26]

Paiam M R, MacDonald R I. A 12-channel phased-array wavelength multiplexer with multimode interference couplers. IEEE Photonics Technology Letters, 1998, 10(2): 241-243.

[27]

Hibino Y. Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(6): 1090-1101.

[28]

Torsten A. Bragg grating-assisted MMI-coupler for add-drop multiplexing. Journal of Lightwave Technology, 1998, 16(8): 1517-1522.

[29]

Jin Z. Silica-on-silicon lightwave circuits based on multimode interference for optical communications, 2006

[30]

Veerman F B, Schalkwijk P J, Pennings E M C, Smit M K, Verbeek B. An optical passive 3-dB TMI-coupler with reduced fabrication tolerance sensitivity. IEEE Journal of lightwave Technology, 1992, 10(3): 306-311.

[31]

Rasmussen T, Rasmussen J K, Povisen J H. Design and performance evaluation of 1-by-64 multimode interference power splitter for optical communications. IEEE Journal of lightwave technology, 1995, 13(10): 2069-2074.

[32]

Lai Q, Bachmann M, Melchior H. Low loss 1×N multimode interference couplers with homogeneous output power distributions realized in silica-on silicon materials. Electronics Letters, 1997, 33(20): 1699-1700.

[33]

Wang Q, Lu J, He S. Optimal design of a multimode interference coupler using a genetic algorithm. Optics Communications, 2002, 209(1–3): 131-136.

[34]

Rooms F, Morand A, Schaner I, Benech P, Blaize S. A complete physical approach to position the access waveguides of weakly confined multimode interference couplers. Optics Communications, 2003, 221(4–6): 317-322.

[35]

West B, Honkanen S. MMI devices with weak guiding designed in three dimensions using a genetic algorithm. Optics Express, 2004, 12(12): 2716-2722.

[36]

Ulrich R, Kamiya T. Resolution of self-images in planar optical waveguides. Journal of the Optical Society of America, 1978, 68(5): 583-592.

[37]

Soldano L, Pennings E. Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 1995, 13(4): 615-627.

[38]

Rajarajan M, Rahman B, Wongcharoen T, Grattan K. Accurate analysis of MMI devices with two-dimensional confinement. Journal of Lightwave Technology, 1996, 14(9): 2078-2084.

[39]

Hosseini A, Kwong D N, Lin C Y, Lee B S, Chen R T. Output formulation for symmetrically-excited one-to-N multimode interference coupler. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 6(1): 53-60.

[40]

Optokon. SFT-P series 1×N Planar Optical Splitter, 2009, Czech Republic: Optokon Co., Ltd.

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/