Design and optimization of index-guiding photonic crystal fiber gas sensor

Saeed Olyaee , Alieh Naraghi

Photonic Sensors ›› 2012, Vol. 3 ›› Issue (2) : 131 -136.

PDF
Photonic Sensors ›› 2012, Vol. 3 ›› Issue (2) : 131 -136. DOI: 10.1007/s13320-013-0096-5
Regular

Design and optimization of index-guiding photonic crystal fiber gas sensor

Author information +
History +
PDF

Abstract

An index guiding photonic crystal fiber used in gas sensing applications is presented. The dependency of the confinement loss and relative sensitivity on the fiber parameters and wavelength is numerically investigated by using the full-vectorial finite element method (FEM). The simulations showed that the gas sensing sensitivity increased with an increase in the core diameter and a decrease in the distance between centers of two adjacent holes. Increasing the hole size of two outer cladding rings, this structure simultaneously showed up to 10% improved sensitivity, and the confinement loss reached 6×10−4 times less than that of the prior sensor at the wavelength of 1.5 μm. This proved the ability of this fiber used in gas and chemicals sensing applications.

Keywords

Confinement loss / evanescent field / gas sensor / relative sensitivity / photonic crystal fiber

Cite this article

Download citation ▾
Saeed Olyaee, Alieh Naraghi. Design and optimization of index-guiding photonic crystal fiber gas sensor. Photonic Sensors, 2012, 3(2): 131-136 DOI:10.1007/s13320-013-0096-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Olyaee S., Dehghani A. A.. High resolution and wide dynamic range pressure sensor based on two-dimensional photonic crystal. Photonic Sensors, 2012, 2(1): 92-96.

[2]

S. Olyaee and A. A. Dehghani, “Nano-pressure sensor using high quality photonic crystal cavity resonator,” in 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Poznan, July 18–20, pp. 1–4, 2012.

[3]

Knight J. C., Birks T. A., Russell P. St. J., Atkin D. M.. All-silica single-mode fiber with photonic crystal cladding. Optics Letters, 1996, 21(9): 1547-1549.

[4]

Russell P. St. J.. Photonic crystal fibers. Science, 2003, 299(5605): 358-362.

[5]

Nielsen M., Jacobsen C., Mortensen N., Folkenberg J., Simonsen H.. Low-loss photonic crystal fibers for transmission systems and their dispersion properties. Optics Express, 2004, 12(7): 1372-1376.

[6]

Olyaee S., Taghipour F.. Doped-core octagonal photonic crystal fiber (O-PCF) with ultra-flattened nearly zero dispersion and low confinement loss in a wide wavelength range. Fibers and Integrated Optics, 2012, 31(3): 178-185.

[7]

MacPherson W. N., Rigg E. J., Jones J. D. C., Kumar V. V. R. K., Knight J. C., Russell P. St. J.. Finite-element analysis and experimental results for a microstructured fiber with enhanced hydrostatic pressure sensitivity. Journal of Lightwave Technology, 2005, 23(3): 1227-1231.

[8]

Temelkuran B., Hart S. D., Benoit G., Joannopoulos J. D., Fink Y.. Wavelength-scalable hollow optical fibers with large photonic band gaps for CO2 laser transmission. Nature, 2002, 420(6916): 650-653.

[9]

Olyaee S., Taghipour F.. Ultra-flattened dispersion hexagonal photonic crystal fiber with low confinement loss and large effective area. IET Optoelectronics, 2012, 6(2): 82-87.

[10]

Olyaee S., Taghipour F.. A new design of photonic crystal fiber with ultra-flattened dispersion to simultaneously minimize the dispersion and confinement loss. Journal of Physics: Conference Series, 2011, 276(1): 012080-1-012080-5.

[11]

Du H.. SERS-based photonic crystal fiber sensing platform. Proc. SPIE, 2006, 6083, 74.

[12]

Knight J. C.. Photonic crystal fibres. Nature, 2003, 424(6950): 847-851.

[13]

Smolka S., Barth M., Benson O.. Highly efficient fluorescence sensing with hollow core photonic crystal fibers. Optics Express, 2007, 15(20): 12783-12791.

[14]

Hoo Y. L., Jin W., Ju J., Ho H. L.. Numerical investigation of a depressed-index core photonic crystal fiber for gas sensing. Sensors and Actuators B: Chemical, 2009, 139(2): 460-465.

[15]

Yu X., Kwok Y. C., Khairudin N. A., Shum P.. Absorption detection of cobalt (II) ions in an index-guiding microstructured optical fiber. Sensors and Actuators B: Chemical, 2009, 137(2): 462-466.

[16]

Martelli C., Canning J., Stocks D., Crossley M. J.. Water-soluble porphyrin detection in a pure-silica photonic crystal fiber. Optics Letters, 2006, 31(14): 2100-2102.

[17]

Park J., Lee S., Kim S., Oh K.. Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center. Optics Express, 2011, 19(3): 1921-1929.

[18]

Zhang Z. G., Zhang F. D., Zhang M., Ye P. D.. Gas sensing properties of index-guided PCF with air-core. Optics & Laser Technology, 2008, 40(1): 167-174.

[19]

Saitoh K., Koshiba M.. Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers. IEEE Journal of Quantum Electronics, 2002, 38(7): 927-933.

[20]

Brechet F., Marcou J., Pagnoux D., Roy P.. Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method. Optical Fiber Technology, 2000, 6(2): 181-191.

[21]

Kunimasa S., Masanori K.. Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Optics Experss, 2003, 11(13): 3100-3109.

[22]

Wang J., Jiang C., Hu W., Gao M.. Properties of index-guided PCF with air-core. Optics & Laser Technology, 2003, 39(2): 317-321.

[23]

P. Viale, S. Fevrier, F. Gerome, and H. Vilard, “Confinement loss computations in photonic crystal fibres using a novel perfectly matched layer design,” presented at Proceedings of the COMSOL Multiphysics User’s Conference, Paris, France, Nov. 15, 2005.

[24]

Saitoh K., Koshiba M.. Confinement losses in air-guiding photonic bandgap fibers. IEEE Photonics Technology Letters, 2003, 15(2): 236-238.

[25]

Ferrarini D., Vincetti L., Zoboli M., Cucinotta A., Selleri S.. Leakage properties of photonic crystal fibers. Optics Express, 2002, 10(23): 1314-1319.

[26]

Hoo Y. L., Jin W., Shi C., Ho H. L., Wang D. N., Ruan S. C.. Design and modeling of a photonic crystal fiber gas sensor. Applied Optics, 2003, 42(18): 3509-3515.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/