Numerical study on spectral domain optical coherence tomography spectral calibration and re-sampling importance

Hamid Hosseiny , Carla Carmelo Rosa

Photonic Sensors ›› 2012, Vol. 3 ›› Issue (1) : 35 -43.

PDF
Photonic Sensors ›› 2012, Vol. 3 ›› Issue (1) : 35 -43. DOI: 10.1007/s13320-012-0093-0
Regular

Numerical study on spectral domain optical coherence tomography spectral calibration and re-sampling importance

Author information +
History +
PDF

Abstract

A spectral calibration technique, a data processing method and the importance of calibration and re-sampling methods for the spectral domain optical coherence tomography system were numerically studied, targeted to optical coherence tomography (OCT) signal processing implementation under graphics processing unit (GPU) architecture. Accurately, assigning the wavelength to each pixel of the detector is of paramount importance to obtain high quality images and increase signal to noise ratio (SNR). High quality imaging can be achieved by proper calibration methods, here performed by phase calibration and interpolation. SNR was assessed employing two approaches, single spectrum moving window averaging and consecutive spectra data averaging, to investigate the optimized method and factor for background noise reduction. It was demonstrated that the consecutive spectra averaging had better SNR performance.

Keywords

Spectral domain optical coherence tomography / spectral calibration / SNR assessment

Cite this article

Download citation ▾
Hamid Hosseiny, Carla Carmelo Rosa. Numerical study on spectral domain optical coherence tomography spectral calibration and re-sampling importance. Photonic Sensors, 2012, 3(1): 35-43 DOI:10.1007/s13320-012-0093-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang D., Swanson E. A., Lin C. P., Schuman J. S., Stinson W. G., Chang W., . Optical coherence tomography. Science, 1991, 254(5035): 1178-1181.

[2]

Fercher A. F., Drexler W., Hitzenberger C. K., Lasser T.. Optical coherence tomography — principles and applications. Reports on Progress in Physics, 2003, 66(2): 239-303.

[3]

Fujimoto J. G.. Optical coherence tomography. Comptes Rendus De L Academie Des Sciences Serie Iv Physique Astrophysique, 2001, 2(8): 1099-1111.

[4]

Gelikonov G. V., Gelikonov V. M., Shilyagin P. A.. Linear wave-number spectrometer for spectral domain optical coherence tomography. SPIE (Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XII), 2008, 6847, N8470-N8470.

[5]

Hu Z., Rollins A. M.. Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer. Optics Letters, 2007, 32(24): 3525-3527.

[6]

Adler D. C., Chen Y., Huber R., Schmitt J., Connolly J., Fujimoto J. G.. Three-dimensional endomicroscopy using optical coherence tomography. Nature Photonics, 2007, 1(12): 709-716.

[7]

Wang K., Ding Z. H.. Spectral calibration in spectral domain optical coherence tomography. Chinese Optics Letters, 2008, 6(6): 902-904.

[8]

Makita S., Fabritius T., Yasuno. Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye. Optics Express, 2008, 16(12): 8406-8420.

[9]

Szkulmowski M., Wojtkowski M., Bajraszewski T., Gorczyńska I., Targowski P., Wasilewski W., . Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source. Optics Communications, 2005, 246(4–6): 569-578.

[10]

Cense B., Nassif N., Chen T., Pierce M., Yun S. H., Park B., . Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Optics Express, 2004, 12(11): 2435-2447.

[11]

Dorrer C., Belabas N., Likforman J. P., Joffre M.. Spectral resolution and sampling issues in Fourier-transform spectral interferometry. Journal of the Optical Society of America B, 2000, 17(10): 1795-1802.

[12]

Yun S., Tearney G. J., Bouma B. E., Park B. H., Boer J. F. d.. High-speed spectral-domain optical coherence tomography at 1.3 m wavelength. Optics Express, 2003, 11(26): 3598-3604.

[13]

Choma M., Sarunic M., Yang C., Izatt J.. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics Express, 2003, 11(18): 2183-2189.

[14]

Leitgeb R. A., Drexler W., Unterhuber A., Hermann B., Bajraszewski T., Le T., . Ultrahigh resolution Fourier domain optical coherence tomography. Optics Express, 2004, 12(10): 2156-2165.

[15]

Wojtkowski M., Srinivasan V., Ko T., Fujimoto J., Kowalczyk A., Duker J.. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Optics Express, 2004, 12(11): 2404-2422.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/