Fiber laser sensor based on a phase-shifted chirped grating for acoustic sensing of partial discharges

Sanderson E. U. Lima , Rubem G. Farias , Francisco M. Araújo , Luís A. Ferreira , José L. Santos , Vladimiro Miranda , Orlando Frazão

Photonic Sensors ›› 2012, Vol. 3 ›› Issue (1) : 44 -51.

PDF
Photonic Sensors ›› 2012, Vol. 3 ›› Issue (1) : 44 -51. DOI: 10.1007/s13320-012-0089-9
Regular

Fiber laser sensor based on a phase-shifted chirped grating for acoustic sensing of partial discharges

Author information +
History +
PDF

Abstract

Acoustic emission monitoring is often used in the diagnosis of electrical and mechanical incipient faults in the high voltage apparatus. Partial discharges are a major source of insulation failure in electric power transformers, and the differentiation from other sources of acoustic emission is of the utmost importance. This paper reports the development of a new sensor concept — a fiber laser sensor based on a phase-shifted chirped fiber grating — for the acoustic emission detection of incipient faults in oil-filled power transformers. These sensors can be placed in the inner surface of the transformer tank wall, not affecting the insulation integrity of the structure and improving fault detection and location. The performance of the sensing head is characterized and compared for different surrounding media: air, water, and oil. The results obtained indicate the feasibility of this sensing approach for the industrial development of practical solutions.

Keywords

Transformer insulation / partial discharges / acoustic detection / fiber laser sensors

Cite this article

Download citation ▾
Sanderson E. U. Lima, Rubem G. Farias, Francisco M. Araújo, Luís A. Ferreira, José L. Santos, Vladimiro Miranda, Orlando Frazão. Fiber laser sensor based on a phase-shifted chirped grating for acoustic sensing of partial discharges. Photonic Sensors, 2012, 3(1): 44-51 DOI:10.1007/s13320-012-0089-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lima S. E. U., Frazão O., Farias R. G., Araújo F. M., Ferreira L. A., Santos J. L., . Mandrel-based fiber-optic sensors for acoustic detection of partial discharges — a proof of concept. IEEE Transactions on Power Delivery, 2010, 25(4): 2526-2534.

[2]

Miranda V., Castro A. R. G.. Improving the IEC table for transformer failure diagnosis with knowledge extraction from neural networks. IEEE Transactions on Power Delivery, 2005, 20(4): 2509-2516.

[3]

T. Bengtsson, H. Kols, and B. Jönsson, “Transformer PD diagnosis using acoustic emission technique,” presented at 10th Int. Symp. on High Voltage Engineering, Montreal, Canada, Aug. 25–29, 1997.

[4]

Lopez-Higuera J. M.. Handbook of Optical Fiber Sensing Technology, 2002, New York: John Wiley & Sons Inc.

[5]

Kersey A. D.. A review of recent developments in fiber optic sensor technology. Optical Fiber Technology, 1996, 2(3): 291-317.

[6]

Koo K. P., Kersey A. D.. Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing. Journal of Lightwave Technology, 1995, 13(7): 1243-1249.

[7]

Bagnoli P. E., Beverini N., Falciai R., Maccioni E., Morganti M., Sorrentino F., . Development of an erbium-doped fiber laser as a deep-sea hydrophone. Journal of Optics A: Pure and Applied Optics, 2006, 8(7): 535-539.

[8]

Bagnoli P. E., Beverini N., Bouhadef B., Castorina E., Falchini E., Falciai R., . Erbium-doped fiber lasers as deep-sea hydrophones. Nuclear Instruments Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors, Associated, Equipment, 2006, 567(2): 515-517.

[9]

Ball G. A., Glenn W. H.. Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors. Journal of Lightwave Technology, 1992, 10(10): 1338-1343.

[10]

Kersey A. D., Berkoff T. A., Morey W. W.. High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection. Electronics Letters, 1992, 28(3): 236-238.

[11]

Song Y. W., Havstad S. A., Starodubov D., Xie Y., Willner A. E., Feinberg J.. 40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG. IEEE Photonics Technology Letters, 2001, 13(11): 1167-1169.

[12]

Chang S. H., Hwang I. K., Kim B. Y., Park H. G.. Widely tunable single-frequency Er-doped fiber laser with long linear cavity. IEEE Photonics Technology Letters, 2001, 13(4): 287-289.

[13]

Dong X., Ngo N. Q., Shum P., Tam H. Y., Dong X.. Linear cavity erbium-doped fiber laser with over 100 nm tuning range. Optics Express, 2003, 11(14): 1689-1694.

[14]

Sabourdy D., Kermene V., Desfarges-Berthelemot A., Lefort L., Barthelemy A., Even P., . Efficient coherent combining of widely tunable fiber lasers. Optics Express, 2003, 11(2): 87-97.

[15]

Liu H. L., Tam H. Y., Chung W. H., Wai P. K. A., Sugimoto N.. Low beat-noise polarized tunable fiber ring laser. IEEE Photonics Technology Letters, 2006, 18(5): 706-708.

[16]

Li S. Y., Ngo N. Q., Zhang Z. R.. Tunable fiber laser with ultra-narrow linewidth using a tunable phase-shifted chirped fiber grating. IEEE Photonics Technology Letters, 2008, 20(17): 1482-1484.

[17]

T. Bengtsson, M. Leijon, and L. Ming, “Acoustic frequencies emitted by partial discharges in oil,” presented at 8th Int. Symp. on High Voltage Engineering, Yokohama, Japan, Aug. 22–27, 1993.

[18]

Krauthammer T., Ventsel E.. Thin plates and shells: theory, analysis and applications, 2001 1st ed. New York: Mercel Dekker Inc.

[19]

Soedel W.. Vibrations of Shells and Plates, 2004 3rd ed. New York: Mercel Dekker Inc.

[20]

M. Anghinolfi, A. Calvi, A. Cotrufo, M. Ivaldi, O. Yershova, F. Parodi, et al., “A fiber optic air backed mandrel hydrophone to detect high energy hadronic showers in the Water,” presented at Workshop of the Russian-Italian collaboration in the Cosmic Ray Physics, Moscow, Oct. 17, pp. 1–9, 2005.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/