Modeling refractive index change in writing long-period fiber gratings using mid-infrared laser radiation

João M. P. Coelho , Marta C. Nespereira , Manuel Abreu , José M. Rebordão

Photonic Sensors ›› 2012, Vol. 3 ›› Issue (1) : 67 -73.

PDF
Photonic Sensors ›› 2012, Vol. 3 ›› Issue (1) : 67 -73. DOI: 10.1007/s13320-012-0084-1
Regular

Modeling refractive index change in writing long-period fiber gratings using mid-infrared laser radiation

Author information +
History +
PDF

Abstract

The research on the use of fiber sensors based on long-period fiber gratings inscribed by CO2 laser mid-infrared radiation has increased in the last years. In this paper, a set of analytical expressions are used to model the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Thermal and residual stress analysis is exemplified for a standard single mode fiber, demonstrating the capability of these models to point out the necessary parameters to achieve proper optical fiber devices based on long period fiber gratings. Experimental results are also presented.

Keywords

Optical fiber sensors / fiber gratings / laser processing / refractive index / thermo-mechanical processes

Cite this article

Download citation ▾
João M. P. Coelho, Marta C. Nespereira, Manuel Abreu, José M. Rebordão. Modeling refractive index change in writing long-period fiber gratings using mid-infrared laser radiation. Photonic Sensors, 2012, 3(1): 67-73 DOI:10.1007/s13320-012-0084-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kersey A. D., Davis M. A., Heather J. P., LeBlanc M., Koo K. P., Askins C. G., . Fiber grating sensors. Journal of Lightwave Technology, 1997, 15(8): 1442-14463.

[2]

Silva C., Coelho J. M. P., Caldas P., Frazão O., Jorge P. A., Santos J. L.. Optical fiber sensing system based on long-period gratings for remote refractive index measurement in aqueous environments. Fiber and Integrated Optics, 2009, 29(3): 160-169.

[3]

Martinez-Rios A., Monzon-Hernandez D., Torres-Gomez I., Salceda-Delgado G.. Yasin Moh., Harun S., Arof H.. Long period fiber gratings. Fiber Optic Sensors, 2012, Ridjeka, Croatia: InTech, 275-291.

[4]

Silva C., Coelho J. M. P., Caldas P., Jorge P.. Yasin Moh., Harun S., Arof H.. Fiber sensing system based on long-period gratings for monitoring aqueous environments. Fiber Optic Sensors, 2012, Ridjeka, Croatia: InTech, 317-341.

[5]

Savin S., Digonnet M. J. F., Kino G. S., Shaw H. J.. Tunable mechanically induced long-period fiber gratings. Optics Letters, 2000, 25(10): 710-712.

[6]

Vaziri M., Chen C. L.. An etched two-mode fiber modal coupling element. Journal of Lightwave Technology, 1997, 15(3): 474-481.

[7]

Rego G. M.. Arc-induced long-period fiber gratings: fabrication and their application in communications and sensing, 2006, Porto, Portugal: Dept. Elect. Comp. Eng., Univ. of Porto

[8]

Estudillo-Ayala J., Mata-Chavez R., Hernandez-Garcia J., Rojas-Laguna R.. Yasin Moh., Harun S., Arof H., Ridjeka Ed.. Long period fiber grating produced by arc discharges. Fiber Optic Sensors, 2012, Croatia: InTech, 295-316.

[9]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, B. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” in Optical Fiber Communication Conference (OFC), San Diego, CA, Feb. 1995, pp. PD4–2, 1995.

[10]

Vengsarkar A. M., Lemaire P. J., Judkins J. B., Bhatia V., Erdogan T., Sipe J. E.. Long-period fiber gratings as band-rejection filters. Journal of Lightwave Technology, 1996, 14(1): 58-65.

[11]

Davis D. D., Gaylord T. K., Glytis E. N., Kosinski S. G., Mettler S. C., Vengsarkar A. M.. Long period fiber grating fabrication with focused CO2 laser pulses. Electronics Letters, 1998, 34(3): 302-303.

[12]

M. Akiyama, K. Nishide, K. Shima, A. Wada, and R. Yamauchi, “A novel long-period fiber grating using periodically releases residual stress of pure-silica core fiber,” in Optical Fiber Communication Conference (OFC), San José, CA, Feb. 22–27, pp. 276–277, 1998.

[13]

Coelho J., Nespereira M., Silva C., Rebordão J.. LOLS research in technology for the development and application of new fiber-based sensors. Sensors, 2012, 12(3): 2654-2666.

[14]

Oh S. T., Han W. T., Paek U. C., Chung Y.. Azimuthally symmetric long-period fiber gratings fabricated with CO2 laser. Microwave Optical Technology Letters, 2004, 41(3): 188-190.

[15]

Yablon A. D.. Optical and mechanical effects of frozen-in stresses and strains in optical fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(2): 300-311.

[16]

Yablon A. D., Yan M. F., Wisk P., DiMarcello F. V., Fleming J. W., Reed W. A., . Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity. Applied Physics Letters, 2004, 84(1): 19-21.

[17]

Yang S., Matthews M., Elhadj S., Draggoo V., Bisson S.. Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis. Journal of Applied Physics, 2009, 106(10): 103106-1-103106-7.

[18]

Coelho J., Abreu M., Carvalho-Rodrigues F.. Modelling the spot shape influence on high-speed transmission lap welding of thermoplastics films. Optics Laser in Engineering, 2008, 46(1): 55-61.

[19]

Grellier A., Zayer N., Pannell C.. Heat transfer modelling in CO2 laser processing of optical fibers. Optics Communication, 1998, 152(4–6): 324-328.

[20]

Timoshenko S. P., Goodier J. N.. Theory of elasticity, 1951 2nd Edition New York: McGraw-Hill, 409-410.

[21]

Lancry M., Réginier E., Poumellec B.. Fictive temperature in silica-based glasses and its application to optical fiber manufacturing. Progress in Material Sciences, 2012, 57(1): 63-94.

[22]

Corning® SMF-28 optical fiber product information, Corning Inc.: NY, PI1036, 2002.

[23]

Worrel C. A.. Infrared optical constants for CO2 laser waveguide materials. Journal Materials Science, 1986, 21(3): 781-787.

[24]

Dragic P. D.. The acoustic velocity of Ge-doped silica fibers: a comparison of two models. International Journal of Applied Glass Science, 2010, 1(3): 330-337.

[25]

André P., Rocha A., Domingues F., Facão M.. Bernardes M. A. d. S.. Thermal effects in optical fibers. Developments in Heat Transfer, 2011, Ridjeka, Croatia: InTech, 1-20.

[26]

Nikogosyan D.. Multi-photon high-excitation energy approach to fiber grating inscription. Measurement Science and Technology, 2006, 18(1): R1-R29.

[27]

Clowes J., Syngellakis S., Zervas M.. Pressure sensitivity of side-hole optical fiber sensors. IEEE Photonics Technology Letters, 2009, 10(6): 857-859.

[28]

Siegman A. E., Sasnett M. W., Johnston T. F.. Choice of clip level for beam width measurements using knife-edge techniques. IEEE Journal of Quantum Electronics, 1991, 27(4): 1098-1104.

[29]

Limberger H., Fonjallaz P. Y., Salathé R., Couché F.. Compaction- and photoelastic-induced index changes in fiber Bragg gratings. Applied Physics Letters, 1996, 68(22): 2069-3071.

[30]

liu X., Yan M., Zhan L., Luo S., Zhang Z., Xia Y.. Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings singe-side induced by long-pulse CO2 laser. Optical Communication, 2011, 284(5): 1232-1237.

[31]

Erdogan T.. Cladding-mode resonances in short- and long-period fiber grating filters. Journal of Optics Society America A, 1997, 14(8): 1760-1773.

[32]

Erdogan T.. Cladding-mode resonances in short- and long-period fiber grating filters: errata. Journal of Optics Society America A, 2000, 17(11): 2113.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/