Robust fiber-optic sensor networks

Rosa Ana Perez-Herrera , Montserrat Fernandez-Vallejo , Manuel Lopez-Amo

Photonic Sensors ›› 2011, Vol. 2 ›› Issue (4) : 366 -380.

PDF
Photonic Sensors ›› 2011, Vol. 2 ›› Issue (4) : 366 -380. DOI: 10.1007/s13320-012-0083-2
Review

Robust fiber-optic sensor networks

Author information +
History +
PDF

Abstract

The ability to operate despite failure will become increasingly important as the use of optical sensor networks grows, and the amount of sensing information to be handled by a sensor network is increasing, especially for safety and security applications. In this review, the four categories of protection to allow service to be reestablished after a failure (dedicated/shared and line/path) are thoroughly discussed. This paper also presents an overview of the most representative robust fiber-optic sensor systems, discussing their schemes, pros and cons.

Keywords

Self-healing / robust / resilience / fiber-optic sensor multiplexing / fiber Bragg gratings (FBGs) / fiber-optic networks

Cite this article

Download citation ▾
Rosa Ana Perez-Herrera, Montserrat Fernandez-Vallejo, Manuel Lopez-Amo. Robust fiber-optic sensor networks. Photonic Sensors, 2011, 2(4): 366-380 DOI:10.1007/s13320-012-0083-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lopez-Higuera J. M.. Handbook of optical fiber sensing technology, chapter 21, passive fiber optic sensor networks, 2002, England: John Wiley & Sons Ltd., 433-448.

[2]

Yin S., Ruffin P. B., Yu F. T. S.. Fiber optic sensors, chapter 1, overview of fiber optic sensors, 2008, Boca Raton, FL: CRC Press Taylor & Francis Group, 1-34.

[3]

Diaz S., Abad S., Lopez-Amo M.. Fiber-optic sensor active networking with distributed erbium-doped fiber and Raman amplification. Laser and Photonics Reviews, 2008, 2(6): 480-497.

[4]

Lopez-Amo M., Lopez-Higuera J. M.. Fiber Bragg gratings sensors: recent advancements, industrial applications and market exploitation, chapter 6, multiplexing techniques for FBG sensors, 2011, Bussum, The Netherlands: Bentham Science Publishers

[5]

J. L. Santos, O. Frazão, J. M. Baptista, P. A. S. Jorge, I. Dias, F. M. Araújo, et al., “Optical fiber sensing networks,” in SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings, IMOC 2009, Belem, Brazil, Nov. 3–6, pp. 290–298, 2009.

[6]

Majumder M., Gangopadhyay T. K., Chakraborty A. K., Dasgupta K., Bhattacharya D. K.. Fiber Bragg gratings in structural health monitoring-Present status and applications. Sensors Actuators A: Physical, 2008, 147(1): 150-164.

[7]

Li H., Li D., Song G.. Recent applications of fiber optic sensors to health monitoring in civil engineering. Engineering Structures, 2004, 26(11): 1647-1657.

[8]

Kersey A. D., Davis M. A., Patrick H. J., LeBlanc M., Koo K. P., Askins C. G., . Fiber grating sensors. Journal Lightwave Technology, 1997, 15(8): 1442-1462.

[9]

Hill K. O., Meltz G.. Fiber Bragg grating technology fundamentals and overview. Journal Lightwave Technology, 1997, 15(8): 1263-1276.

[10]

Yin S., Ruffin P. B., Yu F. T. S.. Fiber optic sensors, chapter 10, applications of fiber optic sensors, 2008, Boca Raton, FL: CRC Press Taylor & Francis Group, 397-434.

[11]

Fernandez-Vallejo M., Rota-Rodrigo S., Lopez-Amo M.. Remote (250 km) fiber Bragg grating multiplexing system. Sensors, 2011, 11(9): 8711-8720.

[12]

Leandro D., Ullan A., Lopez-Amo M., Lopez-Higuera J. M., Loayssa A.. Remote (155 km) fiber Bragg grating interrogation technique combining Raman, Brillouin and erbium gain in a fiber laser. IEEE Photonic Technology Letters, 2011, 23(10): 621-623.

[13]

Zornoza A., Pérez-Herrera R. A., Elosúa C., Diaz S., Bariain C., Loayssa A., . Long-range hybrid network with point and distributed Brillouin sensors using Raman amplification. Optics Express, 2010, 18(9): 9531-9541.

[14]

Saitoh T., Nakamura K., Takahashi Y., Iida H., Iki Y., Miyagi K.. Ultra-long-distance (230 km) FBG sensor system. Proc. SPIE, 2008, 7004, 70046C-1-70046C-4.

[15]

Diaz S., Lasheras G., Lopez-Amo M.. WDM bi-directional transmission over 35 km amplified fiber-optic bus network using Raman amplification for optical sensors. Optics Express, 2005, 13(24): 9666-9671.

[16]

Digonnet M. J. F., Vakoc B. J., Hodgson C. W., Kino G. S.. Acoustic fiber sensor arrays. Proc. SPIE (The International Society for Optical Engineering), 2004, 5502, 39-50.

[17]

Chen R. T., Wang M. R., Jannson T.. Multiple-mode reconfigurable electro-optic switching network for optical fiber sensor array. Proc. SPIE (The International Society for Optical Engineering), San Jose, CA, USA, Sep. 17, 1990, 1374, 223-236.

[18]

Peng P., Chi S.. A reliable architecture for FBG sensor systems. Microwave Optics Technology Letters, 2003, 39(6): 479-482.

[19]

E. L. Izquierdo, P. Urquhart, and M. López-Amo, “Optical fiber bus protection architecture for the networking of sensors,” in 2007 IEEE International Symposium on Intelligent Signal Processing, WISP, Alcala de Henares, Oct. 3–5, pp. 1–6, 2007.

[20]

Urquhart P., Palezi H., Jardin P.. Optical fiber bus protection network to multiplex sensors: Self-diagnostic operation. Journal of Lightwave Technology, 2011, 29(10): 1427-1436.

[21]

Hodgson C. W., Digonnet M. J. F., Shaw H. J.. Large-scale interferometric fiber sensor arrays incorporating multiple optical switches. Optical Fiber Technology, 1998, 4(3): 316-327.

[22]

Izquierdo E. L., Urquhart P., Lopez-Amo M.. Protection architectures for WDM optical fiber bus sensor arrays. Journal of Engineering, 2007, 1(2): 1-18.

[23]

Ramamurthy S., Sahasrabuddhe L., Mukherjee B.. Survivable WDM mesh networks. Journal of Lightwave Technology, 2003, 21(4): 870-883.

[24]

López O. G., Schires K., Urquhart P., Gueyne N., Duhamel B.. Optical fiber bus protection network to multiplex sensors: amplification by remotely pumped EDFAs. IEEE Transactions on Instrumentation and Measurement, 2009, 58(9): 2945-2951.

[25]

Zhou D. Y., Subramaniam S.. Survivability in optical networks. IEEE Network, 2000, 14(6): 16-23.

[26]

Saleh A. A. M., Simmons J. M.. Architectural principles of optical regional and metropolitan access networks. Journal of Lightwave Technology, 1999, 17(12): 2431-2448.

[27]

X. Sun and P. Wei, “Using new models to enhance optical-fiber-sensor networks,” SPIE Newsroom, Feb. 8, 2007, DOI: 10.1117/2.1200701.0522.

[28]

Peng P., Lin W., Chi S.. A self-healing architecture for fiber Bragg grating sensor network. Proceedings of IEEE Sensors, 2004, 1, 60-63.

[29]

Yeh C., Chow C., Wu P., Tseng F.. A simple fiber Bragg grating-based sensor network architecture with self-protecting and monitoring functions. Sensors, 2011, 11(2): 1375-1382.

[30]

Kuo S., Peng P., Sun J., Kao M.. A delta-star-based multipoint fiber Bragg grating sensor network. IEEE Sensors Journal, 2011, 11(4): 875-881.

[31]

Peng P., Wang J., Huang K.. Reliable fiber sensor system with star-ring-bus architecture. Sensors, 2010, 10(5): 4194-4205.

[32]

Miki N., Kumozaki K.. Passive optical networks: principles and practice, chapter 5, ranging and dynamic bandwidth allocation, 2007, London, UK: Academic Press, Elsevier

[33]

Peng P., Tseng H., Chi S.. Self-healing fiber grating sensor system using tunable multiport fiber laser scheme for intensity and wavelength division multiplexing. Electronics Letters, 2002, 38(24): 1510-1512.

[34]

Peng P., Tseng H., Chi S.. A hybrid star-ring architecture for fiber Bragg grating sensor system. IEEE Photonics Technology Letters, 2003, 15(9): 1270-1272.

[35]

Peng P., Tseng H., Chi S.. A novel fiber-laser-based sensor network with self-healing function. IEEE Photonics Technology Letters, 2003, 15(2): 275-277.

[36]

Perez-Herrera R. A., Diaz S., Urquhart P., Lopez-Amo M.. A resilient Raman amplified double ring network for multiplexing fiber Bragg grating sensors. Proc. SPIE (The International Society for Optical Engineering), 2007, 6619, 66193E

[37]

Wang C. H., Yeh C. H., Shih F. Y., Chow C. W., Hsu K. C., Lai Y., . Self-protection multi-ring-architecture fiber sensing system. Advanced Materials Research, 2008, 47–50, 793-796.

[38]

Fernandez-Vallejo M., Perez-Herrera R. A., Elosua C., Diaz S., Urquhart P., Bariáin C., . Resilient amplified double-ring optical networks to multiplex optical fiber sensors. Journal of Lightwave Technology, 2009, 27(10): 1301-1306.

[39]

Yeh C., Chow C., Wang C., Shih F., Wu Y., Chi S.. A simple self-restored fiber Bragg grating (FBG)-based passive sensing ring network. Measurement Science and Technology, 2009, 20(4): 043001-1-043001-5.

[40]

H. Zhang, S. Wang, G. Wen, W. Ye, X. Chen, D. Jia, et al., “Large-scale self-healing architectures for fiber Bragg grating sensor network,” in 9th International Conference on Optical Communications and Networks, ICOCN 2010, Nanjing, China, Oct. 24–27, pp. 99–102, 2010.

[41]

Peng P., Huang K.. Fiber Bragg grating sensor system with two-level ring architecture. IEEE Sensors Journal, 2009, 9(4): 309-313.

[42]

Fernandez-Vallejo M., Díaz S., Perez-Herrera R. A., Passaro D., Selleri S., Quintela M. A., . Resilient long-distance sensor system using a multiwavelength Raman laser. Measurement Science and Technology, 2010, 21(9): 094017-1-094017-5.

[43]

Wu C. Y., Feng K. M., Peng P. C., Lin C. Y.. Three-dimensional mesh-based multipoint sensing system with self-healing functionality. IEEE Photonics Technology Letters, 2010, 22(8): 565-567.

[44]

C. Wu, F. Kuo, K. Feng, and P. Peng, “Ring topology based mesh sensing system with self-healing function using FBGs and AWG,” in 2010 Conference on Optical Fiber Communication, Collocated National Fiber Optic Engineers Conference, OFC/NFOEC 2010, San Diego, CA, Mar. 21–25, pp. 1–20, 2010.

[45]

Peng P., Chen J., Sun J.. Novel ring protection architecture for fiber sensor system. Japanese Journal of Applied Physics, 2011, 50(8): 082501-1-082501-4.

[46]

Peng P. C., Chang C. H., Lu H. H., Lin Y. T., Sun J. W., Jiang C. H.. Novel optical add-drop multiplexer for wavelength-division-multiplexing networks. Optics Communications, 2012, 285(13–14): 3093-3099.

[47]

Tibet-Shaban D. N., Zhelezarski N. J.. Design of a resilient optical fiber network for the multiplexing of sensors, 2009, Spain: Department of Electrical and Electronic Engineering, Public University of Navarra

[48]

Peng P., Chi S.. A reliable architecture for FBG sensor systems. Microwave and Optical Technology Letters, 2003, 39(6): 479-482.

[49]

Wu T. H.. Fiber network service survivability, 1992, Norwood, MA: Artech House

[50]

Senior J. M., Moss S. E., Cusworth S. D.. Multiplexing techniques for noninterferometric optical point-sensor networks: a review. Fiber and Integrated Optics, 1998, 17(1): 3-20.

[51]

Grattan K. T. V., Meggitt B. T.. Optical fiber sensor technology, 2000, The Netherlands: Kluwer Academic Publishers

[52]

Montoya V., Lopez-Amo M., Abad S.. Improved double-fiber-bus with distributed optical amplification for wavelength-division multiplexing of photonic sensors. Photonics Technology Letters, 2000, 12(9): 1270-1272.

[53]

Hernandez-Lorenzo R., Lopez-Amo M., Urquhart P.. Single and double distributed optical amplifier fiber bus networks with wavelength division multiplexing for photonic sensors. Journal of Lightwave Technology, 1998, 16(4): 485-489.

[54]

Schluter M., Urquhart P.. Optical fiber bus protection network to multiplex sensors: dedicated line and dedicated path operation. Journal of Lightwave Technology, 2001, 29(15): 2204-2215.

[55]

Fernandez-Vallejo M., Lopez-Amo M.. Optical fiber networks for remote fiber optic sensors. Sensors, 2012, 12(4): 3929-3951.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/