Liquid Crystal-Based Hydrophone Arrays

Zourab Brodzeli , Leonardo Silvestri , Andrew Michie , Vladimir G. Chigrinov , Qi Guo , Eugene P. Pozhidaev , Alexei D. Kiselev , Francois Ladouceur

Photonic Sensors ›› 2011, Vol. 2 ›› Issue (3) : 237 -246.

PDF
Photonic Sensors ›› 2011, Vol. 2 ›› Issue (3) : 237 -246. DOI: 10.1007/s13320-012-0072-5
Regular

Liquid Crystal-Based Hydrophone Arrays

Author information +
History +
PDF

Abstract

We describe a fiber optic hydrophone array system that could be used for underwater acoustic surveillance applications (e.g. military, counter terrorist, and customs authorities in protecting ports and harbors), offshore production facilities or coastal approaches as well as various marine applications. In this paper, we propose a new approach to underwater sonar systems using the voltage-controlled liquid crystals and simple multiplexing method. The proposed method permits measurement of sound under water at multiple points along an optical fiber using the low cost components and standard single mode fiber, without complex interferometric measurement techniques, electronics or demodulation software.

Keywords

Ferroelectric liquid crystal / electrooptic response / hydrophone / sonar / deformed helix ferroelectric liquid crystal / fiber Bragg grating

Cite this article

Download citation ▾
Zourab Brodzeli, Leonardo Silvestri, Andrew Michie, Vladimir G. Chigrinov, Qi Guo, Eugene P. Pozhidaev, Alexei D. Kiselev, Francois Ladouceur. Liquid Crystal-Based Hydrophone Arrays. Photonic Sensors, 2011, 2(3): 237-246 DOI:10.1007/s13320-012-0072-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lemon S. G.. Towed-array history, 1917–2003. IEEE Journal of Oceanic Engineering, 2004, 29(2): 365-373.

[2]

Bucaro J. A., Dardy H. D.. Fiber-optic hydrophone. J. Acoust. Soc. Am., 1977, 62(5): 1302-1303.

[3]

Wild G., Hinckley S.. Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art. IEEE Sensors Journal, 2008, 8(7): 1184-1193.

[4]

Gratten K. T. V., Meggitt B. T.. Optical Fiber Sensor Technology: Applications and systems, 1999, Dordrecht, The Netherlands: Kluwer Academic Publishers

[5]

Leung I., Brodzeli Z., Whitbread T., Chen X., Peng G.. A distributed-feedback fiber-laser-based optical fiber hydrophone system with very high sensitivity. Proc. SPIE (Advanced Sensor Systems and Applications II), 2005, 5634, 434-443.

[6]

Atique S., Betz D., Culshaw B., Dong F., Park H. S., Thursby G., . Detecting ultrasound using optical fibres. J. Optics, 2004, 33(4): 231-238.

[7]

Sheem S. K., Cole J. H.. Acoustic sensitivity of single-mode optical power dividers. Optics Letters, 1979, 4(10): 322-324.

[8]

Beresnev L. A., Chigrinov V. G., Dergachev D. I., Poshidaev E. P., Fünfschilling J., Schadt M.. Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals. Liquid Crystals, 1989, 5(4): 1171-1177.

[9]

Ostrovskii B. I., Chigrinov V. G.. Linear electrooptic effect in chiral smectic C liquid crystals. Kristallografiya, 1980, 25(3): 560-567.

[10]

Chigrinov V. G., Baikalov V. A., Pozhidaev E. P., Blinov L. M., Beresnev L. A., Allagulov A. I.. Flexoelectric polarization of ferroelectric smectic liquid crystal. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 1985, 88(6): 2015-2024.

[11]

Kiselev A. D., Pozhidaev E. P., Chigrinov V. G., Kwok H. S.. Polarization-gratings approach to deformed-helix ferroelectric liquid crystals with subwavelength pitch. Physical Review E, 2011, 83(3): 031703.

[12]

Pozhidaev E. P., Chigrinov V. G., Huang D., Zhukov A., Ho J., Kwok H. S.. Photoalignment of ferroelectric liquid crystals by azodye layers. Japanese Journal of Applied Physics, 2004, 43(8A): 5440-5446.

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/