Modeling of low coherence interferometry using broadband multi-Gaussian light sources

Paul Jansz , Steven Richardson , Graham Wild , Steven Hinckley

Photonic Sensors ›› 2011, Vol. 2 ›› Issue (3) : 247 -258.

PDF
Photonic Sensors ›› 2011, Vol. 2 ›› Issue (3) : 247 -258. DOI: 10.1007/s13320-012-0069-0
Regular

Modeling of low coherence interferometry using broadband multi-Gaussian light sources

Author information +
History +
PDF

Abstract

Using a low coherence interferometry (LCI) model, a comparison of broadband single-Gaussian and multi-Gaussian light sources has been undertaken. For single-Gaussian sources, the axial resolution improves with the source bandwidth, confirming the coherence length relation that the resolution for single Gaussian sources improves with increasing spectral bandwidth. However, narrow bandwidth light sources result in interferograms with overlapping strata peaks and the loss of individual strata information. For multiple-Gaussian sources with the same bandwidth, spectral side lobes increase, reducing A-scan reliability to show accurate layer information without eliminating the side lobes. The simulations show the conditions needed for the resolution of strata information for broadband light sources using both single and multiple Gaussian models. The potential to use the model to study optical coherence tomography (OCT) light sources including super luminescent diodes (SLDs), as reviewed in this paper, as well as optical delay lines and sample structures could better characterize these LCI and OCT elements. Forecasting misinformation in the interferogram may allow preliminary corrections. With improvement to the LCI-OCT model, more applications are envisaged.

Keywords

Medical imaging / optical coherence tomography / Gaussian light sources / modelling

Cite this article

Download citation ▾
Paul Jansz, Steven Richardson, Graham Wild, Steven Hinckley. Modeling of low coherence interferometry using broadband multi-Gaussian light sources. Photonic Sensors, 2011, 2(3): 247-258 DOI:10.1007/s13320-012-0069-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fercher A. F.. Optical coherence tomography. Journal of Biomedical Optics, 1996, 1(2): 157-173.

[2]

Izatt J. A., Kulkarni M. D., Kobayashi K., Sivak M. V., Barton J. K., Welch A. J.. Optical coherence tomography for biodiagnostics. Optics and Photonics News, 1997, 8(5): 41-47.

[3]

Drexler W., Chen Y., Aguirre A., Povazay B., Unterhuber A., Fujimoto J. G.. Drexler W., Fugimoto J.G.. Ultrahigh resolution optical coherence tomography. Optical Coherence Tomography: Technology and Applications, 2008, Berlin: Springer-Verlag, 241.

[4]

P. V. Jansz, G. Wild, S. Richardson, and S. Hinckley, “Simulation of optical delay lines for optical coherence tomography,” in Proc. IQEC-CLEO Pacific Rim, Sydney, Aug. 28, pp. 1400–1402, 2011.

[5]

P. V. Jansz, G. Wild, and S. Hinckley, “A micro-photonic stationary optical delay line for fiber optic TD OCT,” in Proc. OECC ACOFT, Jul. 7–10, pp. 1–2, 2008.

[6]

Friebel M., Helfmann J., Netz U., Meinke M.. Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000 nm. Journal of Biomedical Optics, 2009, 14(3): 034001-1-034001-6.

[7]

Shidlovski V. R.. Drexler W., Fugimoto J. G.. Superluminescent diode light sources for OCT. Optical Coherence Tomogrpahy: Technology and Applications, 2008, Berlin: Springer-Verlag, 281-299.

[8]

Adie S. G.. Enhancement of contrast in optical coherence tomography: new modes, methods and technologies, 2007, The University of Western Australia, Perth, Australia: School of Electrical Engineering

[9]

Fercher A. F., Drexler W., Hitzenberger C. K., Lasser T.. Optical coherence tomography — principles and applications. Report on Progress in Physics, 2003, 66(2): 239-303.

[10]

Zvyagin A. V., Garcia-Webb M. G., Sampson D. D.. Semiconductor line source for low-coherence interferometry. Applied Optics, 2001, 40(6): 913-915.

[11]

J. R. Parker, “Optical coherence tomography: endoscopic instrumentation and applications,” 2003. Retrieved November 23, 2005, from the Imperial College website: http://www.imperial.ac.uk/research/photonics/about/staff/james_parker_octreport.pdf.

[12]

Moore S. C.. A theoretical framework for new approaches to scanning and acquisition in optical coherence tomography, 2003, Perth, Australia: School of Electrical Engineering, The University of Western Australia

[13]

Clivaz X., Marquis-Weible F., Salathé R. P., Novàk R. P., Gilgen H. H.. High-resolution reflectometry in biological tissues. Optics Letters, 1992, 17(1): 4-6.

[14]

Schmitt J. M., Lee S. L., Yung K. M.. An optical coherence microscope with enhanced resolving power in thick tissue. Optics Communications, 1997, 142(4–6): 203-207.

[15]

Burns W. K., Chen C., Moeller R. P.. Fiber-optic gyroscopes with broadband sources. Journal of Lightwave Technology, 1983, 1(1): 98-105.

[16]

Rossetti M., Markus A., Fiore A., Occhi L., Velez C.. Quantum dot superluminescent diodes emitting at 1.3 m. IEEE Photonics Technology Letters, 2005, 17(3): 540-542.

[17]

Sampson D. D., Holloway W. T.. 100 mW spectrally-uniform broad band ASE for spectrum-sliced WDM systems. Electronics Letters, 1994, 30(19): 1611-1612.

[18]

Singh J.. Semiconductor Devices: An Introduction, 1994, New York, USA: McGraw-Hill Inc, 90.

[19]

Andreeva E. V., Lapin P. I., Prokhorov V. V., Shidlovski V. R., Shramenko M. V., Yakubovich S. D.. Novel superluminescent diodes and SLD-based light sources for optical coherence tomography. Proc. SPIE, 2007, 6627, 662703-1-662703-10.

[20]

Wang J., Hamp M. J., Cassidy D. T.. Design considerations for asymmetric multiple quantum well broad spectral width superluminescent diodes. IEEE Journal of Quantum Electronics, 2008, 44(12): 1256-1262.

[21]

Li L. H., Rossetti M., Fiore A., Occhi L., Velez C.. Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers. Electronics Letters, 2005, 41(1): 41-43.

[22]

Bardella P., Rossetti M., Montrosset I.. Modelling of broadband chirped quantum-dot super-luminescent diodes. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3): 785-791.

[23]

Judson P. D. L., Groom K. M., Childs D. T. D., Hopkinson M., Krstajic N., Hogg R. A.. Maximising performance of optical coherence tomography systems using a multi-section chirped quantum dot sup er lumine s c e n t d iode. Microelectronics Journal, 2009, 40(3): 588-591.

[24]

S. K. Ray, K. M. Groom, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Broad-band superluminescent light emitting diodes incorporating quantum dots in compositionally no. 4A, pp. 2542–2545, 2006.

[25]

Ray S. K., Choi T. L., Groom K. M., Stevens B. J., Liu H., Hopkinson M., . High-power and broadband quantum dot superluminescent diodes centered at 1250 nm for optical coherence tomography. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(5): 1267-1272.

[26]

Somers A., Kaiser W., Reithmaier J. P., Forchel A.. Optical gain properties of InAs/InAlGaAs/InP quantum dash structures with a spectral gain bandwidth of more than 300 nm. Applied Physics Letters, 2006, 89, 061107-1-061107-3.

[27]

Ooi B. S., Djie H. S., Wang Y., Tan C., Hwang J. C. M., Fang X., . Quantum dashes on InP substrate for broadband emitter applications. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(4): 1230-1238.

[28]

Baumgartner A., Hitzenberger C. K., Ergun E., Stur M., Sattmann H., Drexler W., . Resolution-improved dual-beam and standard optical coherence tomography: a comparison. Graefe’s Archive Clinical Experimental Ophthalmology, 2000, 238(5): 385-392.

[29]

Wang H., Jenkins M. W., Rollins A. M.. A combined multiple-SLED broadband light source at 1300 nm for high resolution optical coherence tomography. Optics Communications, 2008, 281(7): 1896-1900.

[30]

Lee S., Jeong H., Kim B.. High-speed spectral domain polarization-sensitive optical coherence tomography using a single camera and an optical switch at 1.3 μm. Journal of Biomedical Optics, 2010, 15(1): 010501-1-010501-3.

[31]

Gemert M. J. C. V., Jacques S. L., Sterenborg H. J. C. M., Star W. M.. Skin optics. IEEE Transaction on Biomedical Engineering, 1989, 36(12): 1146-1154.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/