Modeling of Gold Circular Sub-Wavelength Apertures on a Fiber Endface for Refractive Index Sensing

Huy Nguyen , Gregory W. Baxter , Stephen F. Collins , Fotios Sidiroglou , Ann Roberts , Timothy J. Davis

Photonic Sensors ›› 2011, Vol. 2 ›› Issue (3) : 271 -276.

PDF
Photonic Sensors ›› 2011, Vol. 2 ›› Issue (3) : 271 -276. DOI: 10.1007/s13320-012-0068-1
Regular

Modeling of Gold Circular Sub-Wavelength Apertures on a Fiber Endface for Refractive Index Sensing

Author information +
History +
PDF

Abstract

A finite-difference time-domain approach was used to investigate the excitation of surface plasmons of the circular sub-wavelength apertures on an optical fiber endface. This phenomenon provided the basis of a sensitive liquid refractive index sensor. The proposed sensor is compact and has the potential to be used in biomedical applications, having a sensitivity of (373 ± 16) nm per refractive index unit (RIU) as found through the variation of a reflection minimum with the wavelength.

Keywords

Optical fiber / surface plasmon resonance / periodic array / refractive index sensing / finite-difference time-domain

Cite this article

Download citation ▾
Huy Nguyen, Gregory W. Baxter, Stephen F. Collins, Fotios Sidiroglou, Ann Roberts, Timothy J. Davis. Modeling of Gold Circular Sub-Wavelength Apertures on a Fiber Endface for Refractive Index Sensing. Photonic Sensors, 2011, 2(3): 271-276 DOI:10.1007/s13320-012-0068-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kretschmann E., Raether H.. Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch. A, 1968, 23(12): 2135-2136.

[2]

Shankaran D. V., Gobi K. V., Miura N.. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B: Chemical, 2007, 121(1): 158-177.

[3]

Pattnaik P.. Surface plasmon resonance: applications in understanding receptor-ligand interaction. Applied Biochemistry and Biotechnology, 2005, 126(2): 79-92.

[4]

Jorgenson R. C., Yee S. S.. A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B: Chemical, 1993, 12(3): 213-220.

[5]

Trouillet A., Ronot-Trioli C., Veillas C., Gagnaire H.. Chemical sensing by surface plasmon resonance in a multimode optical fibre. Pure and Applied Optics: Journal of the European Optical Society Part A, 1996, 5(2): 227-237.

[6]

Piliarik M., Homola J., Manikova Z., Ctyroky J.. Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber. Sensors and Actuators B: Chemical, 2003, 90(1–3): 236-242.

[7]

Tubb A. J. C., Payne F. P., Millington R. B., Lowe C. R.. Single-mode optical fiber surface plasma wave chemical sensor. Sensors and Actuators B: Chemical, 1997, 41(1–3): 71-79.

[8]

Sharma A. K., Jha R., Gupta B. D.. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors Journal, 2007, 7(8): 1118-1129.

[9]

Fan X., White I. M., Shopova S. I., Zhu H., Suter J. D., Sun Y.. Sensitive optical biosensors for unlabeled targets: a review. Analytica Chimica Acta, 2008, 620(1–2): 8-26.

[10]

Wolfbeis O. S.. Fiber-optic chemical sensors and biosensors. Analytical Chemistry, 2008, 80(12): 4269-4283.

[11]

Lee B., Roh S., Park J.. Current status of micro- and nano-structured optical fiber sensors. Optical Fiber Technology, 2009, 15(3): 209-221.

[12]

Ebbesen T. W., Lezec H. J., Ghaemi H. F., Thio T., Wolff P. A.. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998, 391, 667-669.

[13]

Bethe H. A.. Theory of diffraction by small holes. Physical Review, 1944, 66(7–8): 163-182.

[14]

Anker J. N., Hall W. P., Lyandres O., Shah N. C., Zhao J., Van Duyne R. P.. Biosensing with plasmonic nanosensors. Nature Materials, 2008, 7(6): 442-453.

[15]

Jain P. K., El-Sayed M. A.. Plasmonic coupling in noble metal nanostructures. Chemical Physics Letters, 2010, 487(4–6): 153-164.

[16]

Smythe E. J., Cubukcu E., Capasso F.. Optical properties of surface plasmon resonances of coupled metallic nanorods. Optics Express, 2007, 15(12): 7439-7447.

[17]

Dhawan A., Gerhold M., Muth J.. Plasmonic structures based on subwavelength apertures for chemical and biological sensing applications. IEEE Sensors Journal, 2008, 8(6): 942-950.

[18]

Lin Y., Zou Y., Lindquist R. G.. A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing. Biomedical Optics Express, 2011, 2(3): 478-484.

[19]

Lumerical Solutions, Inc., FDTD Solutions User Manual. Vancouver, BC, Canada, 2011.

[20]

Johnson P. B., Christy R. W.. Optical constants of the noble metals. Physical Review B, 1972, 6(12): 4370-4379.

[21]

Hill K. O., Meltz G.. Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 1997, 15(8): 1263-1276.

[22]

Melle S. M., Lui K., Measures R. M.. Practical fiber-optic Bragg grating strain gauge system. Applied Optics, 1993, 32(19): 3601-3609.

[23]

Bal H. K., Sidiroglou F., Collins S. F., Brodzeli Z.. Multiplexing of fibre optic reflective sensors using Bragg gratings. Measurement Science and Technology, 2010, 21(9): 094011.

[24]

H. Nguyen, “Optical fibre surface plasmon resonance sensors based on a metallic array of sub-wavelength apertures,” Ph.D. dissertation, Faculty of Health, Engineering and Science, Victoria University, 2012.

AI Summary AI Mindmap
PDF

85

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/